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Abstract

We present a summary on ongoing simulation results
for the electron-cloud (EC) buildup in the context of the
proposed FNAL Main Injector (MI) intensity upgrade ef-
fort [1]. Most of the results presented here are for the field-
free region at the location of the retarding field analyzer
(RFA) electron detector [2–4]. The primary input variable
we exercise is the peak secondary electron yield (SEY)
δmax, which we let vary in the range 1.2 ≤ δmax ≤ 1.7.
By combining our simulated results for the electron flux
at the vacuum chamber wall with the corresponding RFA
measurements we infer that 1.25 ∼< δmax ∼< 1.35 at this lo-
cation. From this piece of information we estimate fea-
tures of the EC distribution for various fill patterns, includ-
ing the average electron number density ne. We then com-
pare the behavior of the EC for a hypothetical RF frequency
fRF = 212 MHz with the current 53 MHz for a given to-
tal beam population Ntot. The density ne goes through a
clear threshold as a function of Ntot in a field-free region.
As expected, the higher frequency leads to a weaker EC ef-
fect: the threshold in Ntot is ∼ 2 higher for fRF = 212
MHz than for 53 MHz, and ne is correspondingly lower by
a factor ∼ 2 when Ntot is above threshold. We briefly de-
scribe further work that needs to be carried out, sensitivities
in the calculation, and puzzles in the results that remain to
be addressed.

INTRODUCTION

An upgrade to the MI at FNAL is being considered that
would increase the bunch intensity Nb from the present
Nb ∼ 6 × 1010 to ∼ 30 × 1010 in order to generate in-
tense beams for the neutrino program [1]. Such an increase
in beam intensity would place the MI in a parameter regime
where other storage rings have seen a significant EC effect.
Motivated by this concern, efforts have been undertaken
over the recent past to measure [2–4] and simulate [5–12]
the magnitude of the effect and to assess its operational im-
plications on the proposed upgraded MI.
Although achieving such high intensities will require

significant hardware upgrades, the technique of slip-
stacking the bunch trains generated by the booster allows,
at present, bunch intensities Nb ∼> 10 × 1010 in the MI,
though not for all fill patterns achievable at lower inten-
sities. During 2006 an RFA-type electron detector was
installed in a field-free straight section of the MI which
has been used to measure the EC flux at the walls of the
vacuum chamber [2–4]. The EC number density ne in-
ferred form these measurements is sufficiently low that it is
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not expected to cause significant detrimental effects on the
beam. This absence of an effect is, indeed, consistent with
observations. Nevertheless, the RFA signal obtained at the
highest achieved beam intensities is sufficiently clear to al-
low a first calibration of the simulation codes and therefore
a sharpening of their predictions, and to better evaluate op-
tions for the proposed intensity upgrade.
In this article we present the current status of the

EC build-up simulations by means of the build-up code
POSINST [13–16], and their calibration against the above-
mentioned RFA measurements. By comparing our sim-
ulations against measurements, and subject to reasonable
assumptions, we conclude that δmax was in the range
1.25 ∼< δmax ∼< 1.35 at the location of the RFA when the
measurements were taken [3].1 We compare the EC build-
up in the RFA field-free region with the build-up in a dipole
bending magnet. We find a qualitative difference between
the two: ne shows a clear threshold behavior as a func-
tion of δmax in the field-free region but not in the dipole
magnet. In this latter case, ne is higher by a factor of
∼ 3 than in the field-free region at the same beam inten-
sity provided threshold is exceeded in the field-free region.
We then compare the EC build-up for a hypothetical RF
frequency fRF = 212 MHz with the current value of 53
MHz, for a given total beam population Ntot. We carry
out the comparison of the two frequencies in the range
3.29 × 1013 ≤ Ntot ≤ 16.4 × 1013, which roughly cor-
responds to the range 6×1010 < Nb < 30×1010 in bunch
intensity. In the field-free region we see a strong threshold
behavior of ne as a function of Ntot at fixed δmax, consis-
tent with earlier simulations [5–11]. For fRF = 212MHz,
the threshold value of Ntot is higher by a factor ∼ 2 than
for 53 MHz, and the value of ne is correspondingly lower
by a factor of ∼ 2. Initial results of this comparison were
described in [12]. The corresponding comparison of the
EC build-up for the two RF frequencies in a dipole bend-
ing magnet remains to be carried out, and certain puzzles
in our results remain to be explained.

FIELD-FREE REGION

Summary of Measurements

We are concerned here only with measurements taken
for eight fill patterns. In these measurements a beam of 3, 4
or 5 booster trains was used, each consisting of 81 consecu-
tive filled buckets with a bunch intensityNb as indicated in
Tab. 1. For cases 1, 2 and 4, the trains were equally spaced,
with a gap of 5 empty buckets between trains, in addition to
a long abort gap of 77 empty buckets (the harmonic num-
ber is h = 588). For case 3, one of the trains was spaced

1In general, δmax can increase due to venting of the chamber to air, or
decrease due to beam-induced conditioning.



further away from the other three, by a gap of 42 empty
buckets. The MI beam ramps from injection at Eb = 8.9
GeV to extraction at 120 GeV in ∼ 0.5 s, corresponding
to ∼ 45, 000 revolutions. The beam crosses transition at
Eb ∼> 20 GeV. The RFA is installed in a free-field round
chamber, and the RFA signal was recorded during the full
energy ramp. Using the known acceptance of the RFA and
its V − A calibration, the incident electron flux Je was in-
ferred from the RFA signal, as shown in Fig. 1. For reasons
that are not well understood, the RFA signal peaks in all
cases at Eb � 60 GeV, and it is for this beam energy that
the value of Je is plotted in Fig. 1. We will address this
issue in the discussion below.

Table 1: Fill patterns analyzed.

Case No. trains Nb [1010] Comment
1a 5 9.7 even gaps
1b 5 9.0 even gaps
1c 5 8.1 even gaps
1d 5 7.2 even gaps
2a 4 9.5 even gaps
2b 4 9.1 even gaps
3 4 9.5 uneven gaps
4 3 9.1 even gaps
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Figure 1: Electron flux incident on the vacuum chamber
wall inferred from the RFA measurements in a field-free
region, at Eb = 60 GeV. Each point on this plot represents
a “case,” as listed on Table. 1.

Simulations

Ideally we would simulate the entire energy ramp, but
this is wholly beyond our present-day computer capabili-
ties. We have therefore simulated the EC build-up only for
one full MI revolution for each case (the revolution period
of 11.1 μs, is much longer than necessary for the EC to
reach a steady state, hence the one-turn averages sensibly

correspond to steady state), and only for a few selected val-
ues of Eb during the ramp. For each value of Eb, we used
the actually measured value of the RMS bunch length σz ,
as shown in Fig. 2, and the corresponding transverse RMS
beam sizes σx and σy at the RFA location. For the purposes
of comparing our simulations against measurements, how-
ever, we select only Eb = 60 GeV. CPU running time on a
Macintosh G5 (1.8 GHz) is 1.5–2.5 hrs for one MI revolu-
tion, depending on which parameter set is chosen. Relevant
machine and simulation parameters are listed in Tab. 2.
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Figure 2: Bunch length vs. beam momentum during the MI
ramp. Transition is crossed just above 20 GeV/c.

Concerning the source of electrons, we assume here that
the main primary-electron source mechanism is ionization
of residual gas, with pressure and temperature as listed in
Tab. 2. We choose an artificially high pressure of 20 nTorr
for the purposes of speeding up the simulated EC build-
up; since the EC is dominated by secondary electron emis-
sion off the walls of the chamber, the details of the primary
mechanism are not very important. We assume that the
SEY model described in [14, 15] is applicable to the MI
stainless steel vacuum chamber, with the additional practi-
cal assumption that the SEY at 0 energy, δ(0), is propor-
tional to δmax, δ(0)/δmax = 0.2438. The peak SEY δmax

is the primary variable exercised in this set of simulations:
we allow it to range in 1.2 ≤ δmax ≤ 1.7. We keep Emax,
the incident electron energy at which the SEY peaks, fixed
at 293 eV.

Results for the RFA

Two samples of time-averaged projections of the EC dis-
tribution are shown in Fig. 3. Results for Je are shown
in Figs. 4 and 5. In this latter plot we show the mea-
sured data for the eight cases (Fig. 1) superposed on the
simulations. The intersections of the measurements with
simulations show a set of solutions for δmax in the range
1.25 ∼< δmax ∼< 1.35. The fact that these solutions are rea-
sonably well clustered suggests consistency of the model
and of the measurements.
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Figure 3: Simulated EC number density ne at the field-free location of the RFA. The density is projected onto the trans-
verse plane and is averaged over time during one MI revolution for Eb = 60 GeV. The beam (not shown) travels perpen-
dicularly to the page through the center of the chamber. The red circle represents the vacuum chamber boundary used in
the simulation. Left: case 4, assuming δmax = 1.2. Right: case 1a, assuming δmax = 1.7.

The corresponding values of ne are shown in Fig. 6. It
is clear that Je and ne go through a threshold in δmax: be-
low (above) threshold, ne has an exponential (linear) de-
pendence on δmax. These behaviors are expected on gen-
eral grounds: below threshold, the multiplicative effect of
secondary emission leads to exponential growth. Above
threshold a high enough value of ne is reached that space-
charge forces suppress the further exponential growth of
ne. In the range 1.25∼< δmax∼< 1.35 the average density ne

is in the range ne ∼ 1010 − 1011 m−3 which is typically
lower by an order of magnitude than the average beam neu-
tralization level given by

nb =
Nb

πa2〈sb〉 (1)

where 〈sb〉 = C/M is the average bunch spacing (M is the
number of bunches stored in the ring). For this reason no
significant effect on the beam is expected; indeed, this lack
of an effect is consistent with observations.

Results for the Dipole Magnet

We have carried out EC build-up simulations in a dipole
bending magnet at Eb = 60 GeV. All simulation parame-
ters are the same as for the RFA location, except that the
chamber is elliptical with semi-axes (a, b) = (6.15, 2.45)
cm. The dipole field strength is 0.0115 T/(GeV/c), ie.
B = 0.69 T at 60 GeV. Other parameters are listed in
Tab. 2.
The x− y projection of the time-averaged EC density is

shown in Fig. 7, which should be compared with 3. The
magnetic field effectively confines the electrons to tight
vertical spirals, leading to the characteristic stripe structure
seen in Fig. 7.

The averaged Je and ne are shown in Fig. 8, which
should be compared with Figs. 4 and 6. It seems clear that,
in this case, there is no threshold behavior as a function of
δmax. It is possible that the threshold occurs at lower values
of δmax than 1.2. It is also possible that the effectively one-
dimensional nature of the build-up physics in the dipole,
as compared to the two-dimensional nature in the field-free
region, accounts for the qualitative difference between the
two.

fRF = 53MHZ VS. 212 MHZ

One way to make the EC less intense is to spread out the
beam charge along the circumference because less intense
bunches naturally lead to lower-energy electrons hence,
typically, to a lower effective SEY. To quantify the poten-
tial benefit of this effect for the MI, we have carried out a
comparison of the current RF frequency, fRF = 53 MHz,
with a hypothetical frequency 4 times higher,2 for a given
total beam population Ntot.
In this initial assessment, we have carried out a simpli-

fied simulation only at injection energy, Eb = 8.9 GeV,
and only in the field-free section at the location of the RFA.
Furthermore, we assume a simplified fill pattern in which
there is only one long train and one gap. Specifically, for
each fRF we assume a fill pattern as follows:

fRF =
{

53MHz: 548 full + 40 empty buckets

212MHz: 2192 full + 160 empty buckets
(2)

For any given fill pattern all the bunches are assumed to
have the same particle population Nb. When carrying out
comparisons of the two RF frequencies, we assume that
Nb for fRF = 212 MHz is 1/4 of the value for fRF = 53

2The precise values of fRF are 52.809 and 211.24 MHz.
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Figure 7: Simulated EC density ne in a dipole bending magnet projected onto the transverse plane, averaged over time dur-
ing one MI revolution for Eb = 60 GeV. The red ellipse represents the vacuum chamber boundary used in the simulation.
Top: case 4, assuming δmax = 1.2. Bottom: case 1a, assuming δmax = 1.7.

MHz, so that Ntot is the same in both cases. The range of
values explored for fRF = 53 MHz is Nb = (6 − 30) ×
1010, corresponding toNb = (1.5−7.5)×1010 for fRF =
212 MHz, and to Ntot = (3.29 − 16.4) × 1013 for either
case. Concerning the RMS bunch length σz , we assume
σz = 0.75 m for fRF = 53 MHz, and σz = 0.75/4 =
0.1875 m for fRF = 212 MHz. We assume the same SEY
model as above, but we restrict δmax to the range 1.2–1.4.
Parameters specific to this exercise are listed in Tab. 3 [12].
Parameters that do not appear here are the same as in Tab. 2.

Results

Fig. 9 shows the average incident electron flux Je at the
walls of the chamber, which might compared with the data
in Fig. 4. The result that Je is much lower for Eb = 8.9
GeV than at higher values of Eb is consistent with previous
MI simulations in a somewhat similar parameter regime
[8].
Figure 10 shows ne vs. Ntot, along with the average

beam neutralization density, Eq. 1. For sufficiently high
δmax and/orNtot, the average EC density exceeds the beam
neutralization level. This condition is typically a rough in-
dication of the onset of significant effects on the beam such
as single-bunch instability or emittance growth.

Figures 9 and 10 exhibit a clear threshold behavior in
Ntot. Simple fits to these data show that whenNtot exceeds
a certain value Nth, the average EC density grows like

ne � n0(Ntot −Nth) (3)

where n0 � 0.04 m−3, roughly independently of δmax and
fRF. On the other hand, as shown in Fig. 11, the threshold
Nth does depend on both δmax and fRF, in the form

Nth � −N0(δmax − δ0) (4)

where N0 � 2.5 × 1014, roughly independently of fRF,
and

δ0 �
{

1.75, fRF = 53MHz
1.55, fRF = 212MHz (5)

The growth of ne and Je as a function of Ntot can
be partially explained by the monotonic dependence of
the electron-wall impact energy E0 on Ntot, as shown in
Fig. 12. As E0 increases towards Emax � 293 eV, where
δ(E0) is maximum, one naturally expects an increase in the
effective SEY, hence a larger ne. This argument, however,
does not explain the above-mentioned threshold behavior,
which probably involves a combination of secondary emis-
sion, space-charge forces, and the partial absorption of low-
energy electrons striking the walls.



Table 3: Assumed MI fill pattern parameters for RF frequency comparisons.

Parameter Symbol [unit] Value

Ring and beam
RF frequency fRF [MHz] 52.809 211.24
Harmonic number h 588 2352
No. of bunches M 548 2192
Gap length · · · [buckets] 40 160
Bunch spacing · · · [buckets] 1 1
Bunch spacing tb [ns] 18.94 4.734
Bunch population Nb [1010] 6− 30 1.5− 7.5
Transverse RMS bunch sizes (σx, σy) [mm] (2.3,2.8)
RMS bunch length σz [m] 0.75 0.1875
Total beam population Ntot [1013] 3.29− 16.4
Beam energy Eb [GeV] 8.9

Simulation parameters
No. kicks in Lb Nk [· · ·] 253 65
Integration time step · · · [s] 4.8× 10−11

CONCLUSIONS

By fitting our EC build-up simulations to the RFA-
measured electron-wall flux in an MI field-free region
we conclude that the peak SEY was in the range
1.25 ∼< δmax ∼< 1.35 at the time of the measurements.
This range of values is consistent with others for well-
conditioned stainless steel [17]. Since δmax is almost cer-
tainly the essential parameter that will determine the EC
build-up level in the MI upgrade, bracketing its value al-
lows for better quantitative predictions for higher intensi-
ties. At present beam intensities, our simulations show that,
for this range of δmax, the EC density is low enough not to
lead to detrimental effects on the beam, a conclusion con-
sistent with observations.

In the field-free region analyzed, the steady-state EC
wall flux Je and steady-state average density ne show a
threshold behavior as a function of δmax at fixed beam
intensity. The threshold probably indicates a transition
from a secondary-emission-dominated regime to a space-
charge dominated regime. This threshold behavior is not
seen in the simulations for a dipole bending magnet for
the range of values of δmax explored in this article, namely
1.2 ≤ δmax ≤ 1.7. More work is needed to understand the
absence of threshold behavior in a dipole. One qualitative
difference between field-free and dipole regions is that the
EC dynamics in the former is effectively two-dimensional,
while it is one-dimensional in the latter. This difference
may hold the key to the explanation.

There is a qualitative difference between measurements
and simulations that remains to be explained: the RFA
signal shows a strong dependence on beam energy during
the ramp, typically peaking at Eb ∼ 60 GeV, while spot-
check simulations for the field-free region carried out at
Eb = 8.9, 20, 45, 60 and 90 GeV show virtually no depen-

dence onEb (for each simulated case we used the appropri-
ate values for all energy-dependent parameters, in particu-
lar the RMS beam sizes). We further recall that transition
energy is ∼ 20 GeV, which is significantly below the en-
ergy at which the RFA signal peaks. We do not have an
explanation for this discrepancy. It is possible that our sim-
ulations do not accurately represent certain details of the
actual situation; for example, a significant beam closed or-
bit shift during the ramp might affect the RFA signal, but
this shift would not be taken into account in the simula-
tion. Interestingly, measurements at the SPS show a quali-
tatively similar behavior as the MI: the SPS RFA signal is
strongly energy-dependent and peaks at an energy signifi-
cantly higher than transition energy [18]. We are not aware
of an explanation for the effect at the SPS, although a cor-
relation has been noted between the RFA signal and an em-
pirical but simple combination of powers of the transverse
and longitudinal beam sizes.

When we compare the simulated EC build-up in the RFA
field-free region for two RF frequencies, namely the cur-
rent 53 MHz with a hypothetical 212 MHz, for a given
total beam population Ntot, we observe a clear thresh-
old behavior as a function of Ntot: when Ntot exceeds a
valueNth, ne increases proportionally to (Ntot−Nth); for
Ntot < Nth, ne grows exponentially with Ntot.

The thresholdNth has a sensitive inverse dependence on
δmax, and a sensitive direct dependence on fRF: for a given
δmax, Nth is roughly a factor of 2 higher for fRF = 212
MHz than for 53 MHz. For fixedNtot, this qualitative ben-
eficial effect of the higher fRF can be expected on rather
simple grounds, because the correspondingly lower value
ofNb makes the electron-wall impacts less energetic hence
less effective in generating secondary electrons.

The dependence of Nth on fRF affords the possibility
of dramatically reducing the EC density assuming one has



Table 2: Assumed MI parameters for EC simulations.

Ring and beam
Ring circumference C = 3319.419 m
Revolution period T0 = 11.13 μs
RF frequency fRF = 52.809MHz
Harmonic number h = 588
Beam energy Eb = 60 GeV
Bunch profile 3D gaussian
Tr. RMS bunch sizes (σx, σy) = (0.866, 1.06) mm
RMS bunch length σz = 0.19 m
Pipe cross sect. at RFA round
Pipe radius at RFA a = 7.3 cm
Pipe cross sect. at dipole elliptical
Pipe semiaxes at dipole (a, b) = (6.15, 2.45) cm
Dipole field at Eb = 60 GeV B = 0.69 T
Primary e− sources
Resid. gas pressure P = 20 nTorr
Temperature T = 305 K
Ioniz. cross-section σi = 2Mbarns
Ioniz. e− creation rate 1.266× 10−7 (e/p)/m
Secondary e− parameters
Peak SEY δmax = 1.2− 1.7
Energy at δmax Emax = 292.6 eV
SEY at 0 energy δ(0) = 0.2438× δmax

Simulation parameters
Full bunch length Lb = 5σz

Primary macroelectrons/bunch 100
Max. no. of macroelectrons 20000
No. kicks in Lb Nk = 253
Integration time step 4.8× 10−11 s
Space-charge grid 64× 64

some freedom to chose the value of Ntot. This is because
there is always a range ofNtot for which the electron cloud
is below threshold for fRF = 212 MHz but above thresh-
old for fRF = 53 MHz. For example, in Fig. 10 (bot-
tom) for the case δmax = 1.3 and Ntot = 0.8 × 1014, the
simulated ne is almost 5 orders of magnitude smaller for
fRF = 212 MHz than for 53 MHz. On the other hand, if
the desired value of Ntot is so high that it exceeds thresh-
old for fRF = 212MHz (and, a fortiori, for 53 MHZ), then
the beneficial effect of the higher fRF is in the range of a
factor of∼ 2 rather than several orders of magnitude. This,
unfortunately, is the situation for the planned MI upgrade.

Although the RF frequencies comparison carried out
here is based on a simplified beam fill pattern, and only
for Eb = 9.9 GeV, we expect the qualitative features of
our results to remain valid for more realistic patterns, in-
volving several gaps in the bunch train, provided the values
of Ntot are in the range considered here. It seems impor-
tant to repeat this exercise in a dipole on account of the
observed qualitative difference in the simulations between
a field-free region and a dipole field region.
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Figure 4: Simulated incident electron flux Je on the vac-
uum chamber walls at the field-free region where the RFA
is installed vs. the assumed value of δmax, atEb = 60GeV.
The flux was averaged during one MI revolution. Top and
bottom are the same simulated data, plotted with linear and
logarithmic scales respectively.

Our simulations may be sensitive to model variables,
which we have not yet fully explored, that may change cer-
tain details of our conclusions. Such variables may include:

• The precise value of δ(0).

• The detailed composition of the secondary emission
energy spectrum, particularly the fraction of redif-
fused electrons.

• The precise value of Emax.

• Computational parameters, such as the space-charge
grid size and integration time step.

We intend to extend the work presented here by address-
ing as many of these issues as possible in the near future.
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Figure 5: Detail of the simulated electron flux Je (Fig. 4
bottom) plotted along with the RFA measurements, taken
from Fig. 1, for each case (thick horizontal lines). The in-
tersections of the measurements with the simulations, indi-
cated by bowties, imply 1.25∼< δmax ∼< 1.35.
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Figure 6: Simulated EC density at the field-free region
where the RFA is installed vs. the assumed value of δmax,
at Eb = 60 GeV. The density was averaged during one
MI revolution and over the entire volume of the chamber
section being simulated. Top and bottom are the same sim-
ulated data, plotted with linear and logarithmic scales re-
spectively.
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Figure 8: Simulated EC flux at the wall (top), and volu-
metric density (bottom) in a dipole bend vs. the assumed
value of δmax, at Eb = 60 GeV. The quantities were aver-
aged during one MI revolution. The flux was averaged over
the entire chamber surface, and the density over the entire
volume.
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and F. Zimmermann, “Beam Observations with Electron
Cloud in the CERN PS & SPS Complex,” Proc. 31st ICFA
Advanced Beam Dynamics Workshop on Electron-Cloud
Effects “ECLOUD04” (Napa, California, April 19-23,
2004; M. Furman, S. Henderson and F. Zimmermann,
eds.), CERN Yellow Report CERN-2005-001/CARE-Conf-
05-001-HHH/LBNL-56372/SNS-10400000-TR0024-R00
http://icfa-ecloud04.web.cern.ch/icfa-ecloud04/

���

���

���

���

�
�
�
�
�
	

	��
��
��

���������
��

���
���	

�� ���

	�	 ���

���
����

�� ���

	�	 ���

���
����

�� ���

	�	 ���

���������� ������

��
��

��
��

��
��

��
��

��
��

��
�	

��
��

��
�

��
�



�
�


	

	�����
��

���������
����

�������	

�� ���

	�	 ���

��������

�� ���

	�	 ���

��������

�� ���

	�	 ���

���������� ����� 

Figure 9: Average simulated Je at the RFA location for
Eb = 8.9 GeV and δmax = 1.2, 1.3 and 1.4. Top: linear
scale; bottom: log scale (same data).
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Figure 10: Average simulated ne. Top: linear scale; bot-
tom: log scale (same data). The straight green line in the
top plot is the average beam neutralization density, Eq. (1).
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Figure 11: Nth vs. δmax (Eqs. (4-5)).
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Figure 12: Average simulated impact kinetic energy at the
walls, per electron-wall collision.
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