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Abstract
Sp.ch. 100% 50% %

The stable region of the Fermilab Booster beam in \ \
the complex coherent-tune-shift plane appears to have been
shifted far away from the origin by its intense space-charge
making Landau damping impossible. However, it is shown
that the bunching structure of the beam reduces the mean
space-charge tune shift. As a result, the beam can be stabi-
lized by suitable octupole-driven tune spread.
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(?:_igure 1:Stability contour from octupole alone shown in dashes

changes to the red curve with the introduction of full spelcarge

incoherent tune spread is shifted quite far away from tlﬁ'ff")rce. It changes to the green and blue curves when spacgecha
coherent tune. We wonder why Landau damping coming reduced to, respectively, 50% and 10%.

from octupoles can be possible, because the inductive tune . . .
spread of the vacuum chamber cannot be too large. Tth.bIe I: Some properties of the Fermilab Booster and its beam

The Fermilab Booster beam has maximum spac
charge tune shift of\v$P<h ~ 0.5 near injection and the

max

ambiguity can be resolved when the bunching structure oF njection.

the beam is considered. RadiusR (m) 75.42
Total EnergyF (GeV) 1.40
STABILITY CONTOURS Rf harmonic 84

Following the analytic solution of Métral and Rug- Transition gammay 5440
giero[1], we computed the stability contour of the Fer- Bunch intensityN;, 6 x 101
milab Booster beam including space-charge and octupole Tunew, /v, 6.8/6.8
tune spread. The dashed curve in Fig. 1 shows the stabil- Normalized rms emittance ¢~ wm) 2.00
Rms bunch length, (m) 0.70

ity contour of having an octupole tune spread of roughly
—0.042 < Ay, <0.065 if space-charge is totally neglected.

) o i dance has been measured and computed to be very much

The plotisRe Av? , versusim AvY |, , which is essentially .

2 7L versus. Re 71 with ZL being the transverse smaller[2]. Even when the space-charge force is reduced
it L ! g to 50% (green curve), an inductive tune shiftof 0.1

|mp;adar?ce ﬁxpezlel:_fted bﬁ/_lthfhbeam_. Thireglpn l:.nde_r t{g,erequired for stability. We see that stability is restored
contour implies stability while the region above implies in .
- P y } 9 p only when the space-charge is reduced to about 10% (blue
stability. When space-charge is turned on according to the L :
) o ) - curve). In the derivation of the contours, coasting beam
information in Table I, this stability contour becomes the .
. . ) N ] with peak beam current has been assumed.
solid red curve with a much wider stability region as a re-

sult of the large space-charge tune spread. Unfortunately, EFFECTS OF ELECTRON CLOUD

this wide stable area has been shifted far far away from

the center of the plot. Thus, for the beam to be stable, the A large buildup of electrons in the beam region can

inductive part of the vacuum chamber impedance must preutralize the proton charge and thus decrease the amount

extraordinarily large so as to provide an inductive coheff space-charge tune shifts. The code POSINST [3] is

ent tune shift of at least —0.2. But the inductive impe- €mployed to study electron cloud buildup inside the un-

shielded combined-function F- and D-magnetst0% of

*ng@fnal.gov

T Operated by the U.S. Department of Energy, under contratht tive the ring) and all the adjoming beam pipes ‘40% of the
Fermi Research Alliance, LLC. ring) in the Fermilab Booster near injection. We find that
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Figure 2: (Color) Electron density inside a D-magnet with Figure 3:Particle density averaged overo..,,'s is seen to de-
SEY=1.6. Black and red curves depict the electron densities ~ crease rapidly witl. The corresponding electron density aver-
aged over one and four, ,'s of the beam, while the green curve aged oven o, 'S, although smaller, yet decreases less rapidly.
is the electron density averaged over the whole magnet sezss gt the total energy of 1.4 GeV, whefeand are the rel-
tion. 81 consecutive bunches and 3 empty buckets are assumgglyistic factors. If we consider the spread of the stayilit
The dips represent empty buckets or ends of revolutions. contour in Fig. 1,(—0.48, —0.18), as roughly the spread
electron cloud production can reach saturation [4] in the Dof the space-charge tune shift, the neutralization by elec-
magnets when the secondary-emission yield (SEY).5, tron cloud will reduce the spread of the stability contour
while it requires a SE¥ 1.9 to reach saturation in the F- t0(—0.28, —0.105). Even if the electron-cloud neutraliza-
magnets. For the 168 m @f25” beam pipe, saturation is tion werer,., ~ 30%, the spread of the stability contour
reached when SEX 1.6, but for the 28.8 m of beam pipe Would be reduced t6-0.16, —0.060). The inductive part
saturation is reached when SBY.5. of the magnet laminations and connecting beam pipes are
found to supply at most an inductive coherent tune shift of
Figure 2 shows the electron linear density buildup. —0.04[2]. Thus there is still no possibility for the coher-
inside the D-magnet with SE¥1.6, where saturation is ent tune shift of the beam to be inside the stable region of
reached within about 140 rf buckets or less than two revhe stability contour [6]. It is very possible that the neiir
olution turns. But the electron density appears to be veliyation effect of electron-cloud buildup has been overesti
much smaller than the peak beam particle densipfbf=  mated; for example, the SEY can be much less than 1.6.
Ny/[(2m)*0,0y0.] = 2.72 x 10'* m~3. However, the This is because large electron-cloud buildup will signal se
particle density decreases very rapidly away from the beaggre transverse collective beam instabilities and emittan
axis, but the electron density does not. The particle dgnsi§rowths in many parts of the booster ramp cycle, especially
averaged overn o, ,'s is given by near the transition energy when the bunch length is short-

4 5 6

2 3
Number of o, 's

2 2 est[5]. Such severe instabilities and emittance growths
po(nowy) = pp = (1 —e /2) ; (3.1) 5] 9
n have not been reported.
and is shown in Fig. 3. Alongside, we also plot the corre-
sponding electron density averaged over the samg,’s EFFECTS OF BUNCHING

computed using POSINST. For example, electron densi
and proton density averaged over twg,’s are, respec-
tively, 2.2 x 10'3 and11.8 x 10'3 m~3, implying a neutral- The stability contours in Fig. 1 show that a coasting
ization ratio ofr,e, ~ 18.7%, which is rather appreciable. beam has to be unstable if space-charge is large enough.
Here, we must be cautioned that the space-charge tune shitttually such instabilities have been observed in the Fer-
comes from the electric and magnetic parts, which have omilab Recycler Ring [7]. A very long antiproton beam of
posite signs. The electron cloud can only cancel the etectriotal length3.5 s containing8 x10° particles was cooled
part because it is roughly stationary in the vacuum chanstochastically between two barriers to a normalized 95%
ber. Thus the space-charge tune shift is actually reduced bynittance ot g5 =3 x10~% 7m. The synchrotron period is

the factorf. = v2[(1—rnen) — %)) = 1 —reuy? = 0.584  afew seconds. When the vertical chromaticity was reduced

t .
(Y,oastl ng Beam
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Figure 5:(Color) Plots of distribution in space-charge tune shift
in a round bunch with longitudinal Gaussian, cosine squaoe,

E sine, and parabolic distribution. The transverse distidous bi-
Gaussian. The distribution of a coasting beam is also shawn i
dashes for comparison.

‘ 1 smaller space-charge tune shifts, for example, those away
‘I Mﬂwlﬂyuﬂm?wwgyuwgymmgywqywwym‘m from the longitudinal center. Let us first study the distri-
bution of space-charge tune shifts of the patrticles inside a

Figure 4: (Color) Top: FFT of difference signals showing any,\nep \which can also shed some light on the shape of the
instability of a longp beam in the Recycler Ring with slow syn- stability contour [4].

chrotron oscillation. Lower: Emittance growth and FFT dfet-
ence signals showing an instability of a coastirigeam.

The distribution of space-charge tune shift in a coast-
from —2 to 0 to reduce momentum-spread generated Laf?g beam with circular cross section and bi-Gaussian distri
dau damping, the beam became unstable. The differeniéétion shows that the distribution is skewed towards higher
signals were sampled and their FFT is shown in the upp¥@lues, with [8],

ig. 4. i ide- (A spch A spch
plot of Fl_g 4. The tallefst lines are_the Iower.betatron side- ( u‘ h> — 0.6334, ( y' h> 01678, (4.1)
bands with the revolution harmonics to the right and upper APy oo/ rms

sidebands to the next right. The excitations roll off veryrhis distribution, called,p (Av*Peh /APty fis shown in

max

slowly with frequency as if they are driven by the resistivgjashes in Fig. 5. It also shows that the distribution is es-
wall impedance. In order to rule out the possibility of two-sentially zero whem\v*<" /Apsbeh < 0.15. This curve

stream coupled interaction due to trapped ions, the expefias close resemblance to the stability contour in Fig. 1(a).
ment was repeated with a proton beam that could not trag fact, they should be closely related. For a bunch, how-
ions. A special proton beam in the Recycler Ring was carewver, the space-charge tune shift distribution can be very

fully scraped and debunched to an intensity®® x 10" gifferent because the particles near the two ends haverrathe
andengs =6 X 10~% 7m. As the Chromaticity was reduced small Space-charge tune shifts.

from —2 to 0, a vertical instability was observed with a

6-fold increase in emittance blowup. This is depicted to-  Letthe longitudinal or linear distribution of the bunch
gether with the FFT of the difference signals in the lowebe A;(z), which is normalized to unity after integrating
plots of Fig. 4. The observed growth time agrees with conver z. For a slice of the bunch at the number of parti-
putation in the absence of Landau damping. Eventually,@les residing in the slice &, A, (z)dz. Thus the maximum
dedicated damper was built to cope with this instability. Space-charge tune shift inside this slice is

Bunched Beam AviER(2) = AER0) izggi (4.2)

The situation of a bunched beam can be differentdere, Avs< (0) is the maximum space-charge tune shift

max

This is because there will be many more particles havingf the whole bunch, and is the samegP<" in Eq. (4.1)




for the 2D coasting beam. Thus for this particular slice, the DISPERSION RELATION OF A BUNCH
distribution in space-charge tune shift is

- Aypspeh ; AvPh N (0)\ Mo (0) t'll'hebdlspers_lt(;]n relatlonhof Metra(ljanfl Rulggt|ero for a 5
slice \| =~ span’? | — ; ) -
tiee | 5, 5pel 2D AT () ) Mol2) coasting beam with space-charge and octupole tune sprea

4.3) can be written as
— AV

mc (

which is properly normalized that an integration over yaf(J Ju) [AvY
1= / dJ. / dJy

Jzs Jy)]
coh T Yy
AvsPeh / Apseeh gives unity. The distribution for the whole Uy (T Jy) —mvs :

bunch is therefore (5.1)
Apspch 2 Aypspch Here, f(J5, Jy) is the transverse particle density normal-
Fsp (m) = /_Z Filice (m7 2') Ap(2)dz' ized to unity, with.J,, ,, denoting the horizontal and vertical
AP 3,(0) / actions of the beam particle. In the denominatgris the
/ fap (A W ))/\b(O)dz , (4.4) coherent or eigen-betatron tune to be determingd the
Vinax synchrotron tune with spread neglectedis the azimuthal

where the limits of integration-z are given by the ex- mode number, and the incoherent tune spread is given by
cursion ofz’ at the maximum space-charge tune shift, or

Ayprh/\b( ) Al/prh/\b( ) Vy(']m’ Jy) = VyO(Jm, J, ) + AVlnc(']m’ Jy)7 (52)

max

where Av! is the vertical space-charge self-field tune

Take the Gaussian distribution as an example, the 3Gyt ,, (7, J, ) is the vertical tune including tune spread

tune-shift distribution is given by coming from octupoles. In the numeratdyy?, denotes
spch z spch 4 . . . .
Esp (AV - ) =/ fap (AV > ez/2/2) dz : the coherent vertical tune shift driven by impedance.
AR AR V27T
(4.5)

For a bunch, the above dispersion relation applies
to an individual slice at a distancefrom the longitudi-
nal bunch center. The dependencezomill appear in the
space-charge tune shiffv” , since the latter is propor-

inc’

Apspeh o Apspeh 246’ . : .

Fsp|——5 )=/ fp — ; tional to the linear particle density at A simple extension
Avphax -0 cos2 ' Avprax /T . . . .

(4.6) of the dispersion relation to describe a bunch would be an

with 0 = cos—! 1/Ayspch/A,/;}{’;}g_ For the cosine distri- average over the linear particle densgjty), or

with z= \/—2 In (Avspeh / Avbe). For the cosine square
distribution,\,(z) = £ cos®(rz/22), the 3D tune-shift dis-
tribution is

bytloh,)\é(z):(w/u) cos(mz/2z), the 3D tune-shift dis- /dz/dj /dJ y
tribution is
AVSPCh 0 Ayspch 4o’ 8f(J Jy) [AV —_AWY (J J Z)]
Fsp <—) :/ Jap <7> 4.7) inc\Yz> Jy»
A iy ot cos O/ AvPL ) 27 XQ(Z) I/c_yy(Jm7Jy,Z) — . (5.3

with 6 =cos~ ! (Av™Ph / ApsPeh) Finally, for the parabolic

max

distribution\, (2) = 3 (1—2%/22), the 3D tune-shift distri-

bution is
4 In the model of Métral and Ruggiero,o(J,, J,) is

Ayspch z
o (3273 - 1o
soch (4.8) the vertical tune in the presence of octupoles but in the ab-
with 2z = \/1 Apspeb /AR These distributions are
sence of space-charge. Itis given by

shown in Fig. 5. These curves show that there are plenty
of particles with space-charge tune shift close to zero tune vyo(Jas Jy, 2) = vyoo + ady + bz, (5.4)

where v, now represents the eigen-betatron tune of the
whole bunch. A rigorous derivation of this dispersion rela-

tion is not available at the moment.
Ayspch ‘|

(1—2’2)AVE{’§,?

3dz’

shift, and they are more plentiful when the longitudinal lin Whereyyoo is the bare vertical tune, and

ear density has longer tails. A longitudinal Gaussian distr 3 O,

) . . . 52_d b= 288, —=ds, (5.5)
bution may have been too ideal, but the cosine-square dis- ¢ 87r Iy YBp

tribution is rather realistic. We eXpeCt the Stablllty aount are the Octup0|e dr|ven tune shifts per unit actm,is the
for a bunch behaves similarly. As a result, beam stabibctupole strengthBp is the rigidity of the beam, and, ,

ity can be attained provided that there is some reasonakjge the betatron functions. For the vertical incohereng tun
inductive impedance, some extra tune spread arises frajRift A¥ | we include only the lowest order of nonlinear

nc’

octupoles, an@iRe Zi-| is not too big, while electron cloud space-charge by writing
need not play an important role.



AV (T, Ty, 2) =D (2)+Ag(2) Iy +Ap(2)Jy, (5.6) The merit of the Métral and Ruggiero model is that the

which is derived by the method of harmonic balance anfiansverse coordinates can be integrated analytically th
numerically fitting the space-charge force. Here leaving only one numerical integration to perform for the

longitudinal coordinate. After the integration ovgrand
Ao(2)=R00G(2), Aa(2)=Ra0G(2), Ap(2)=AuoG(2), j, are performed, the dispersion relation becomes
whereG(z) = 27 Rg(z) is dimensionless playing the role 24(2)
of local bunching factor, while Agy, Ago, and Ay are 1= /dz () {[AQcoh (2)} IL—
the space-charge tune shift and detuning gradients for a
coasting beam with the same particle number as the bunch ~ Jmax [Aa(z)lﬁ'Abh} }’ (5.15)
under consideration. Following Métral and Ruggiero, a
round beam has been chosen with the transverse par'ug\fe

ere the analytic closed forms

distribution - Jy — Ju = Jy
12 Jo+J,\ 2 / odjy/ 0 D(z) )’ (5.16)
I Uasdy) = 7 (1 -z v) . (5.8) =0 Jju=
hax max with p1 = jy, p2 = j2, ps = jJjy. are depicted in the Ap-

so that the dispersion relation can be integrated in thandix. With the further definition
closed form for the transverse coordinates. For this dis- 9(2)
tribution, the maximum action is given b¥,., = 502, /dz Il(z)mv
whereo is the transverse rms beam size. We obtain

oA, 3An, N, Kays= / 0] T [ Ba(2) 2 (2) + Bo(2) T3 (2)| +

Aa = ) =737 = T E_A-92.norm’
O T6dmax 0 SJmax by 9(2)
+ Do()N(2) (5.17)
norm 1 H 1 Sl (Z)
with €225 being the normalized rms emittance.
the dispersion relation reduces to
In the denominator of the integrand in the dispersion 1
. . . . AvY — + Kos | . (5.18)
relation, the amplitude-dependent tune shifts driven by oc Yeoh = 7 |22

tupoles and space-charge can be combined to give
vy (Jz, Jy, 2) = vyoot+Do(z)+a1(z)Jy+b1(2)Jz. (5.10)
with

Numerical Solution

As in all dispersion computation, we apply various
real values to the eigen-tung (actuallyq.) in the denomi-
a1(z) = a+A4(z) and bi(z) =b+Ap(2). (5.11) nator of the integrand of Eg. (5.3) with an infinitesimal neg-
ative imaginary part to obtain the correspondihg? , s
of Eq. (5.18). The final integration overis performed nu-
merically. The plot ofRe Av?., versusim Av?., givesthe

The denominator can therefore be written as

den =ve—mv—vz00—Ao (2451 (2) [jy+e1(2)1z], (5.12)

where S1(z) = —a1(2)Jmax, c1(2) = bi1(2)/a1(z), and  stability contour of the dispersion relation.
Joy = Juu/Imax. We next normalize by; and define
d A We choose the generalized elliptical distribution
D(z) = o2 L, e, (613)
Sl( ) Sl (Z) A, 22\ " .
whereq, = v.—muv— vz plays the role of the coherent (or 9(2) = P (1 - ;) for 2| < 2, (5.19)

eigen-) transverse oscillation frequency to be determine:% the longitudinal linear distribution of the bunch with
from the dispersion. A, =T (n+32)/[v7T(n+ 1)] for anyn > —1, whereg(z)
is normalized to unity when integrated overNote thatn

The numerator of the integrand in Eq. (5.3) is i )
need not be an integer or half integer. The rms bunch length

Of (Ja, Jy L . e

% [A von — AV (Ju, Ty, 2)} is given byo? = 52/(2n+3). The merit of this distribution
24 is that it begins with the parabolic distribution whenr= 1

-T2 (1= ja—4y) % and beam tails become lengthened wheincreases. It

max

) _ finally approaches the Gaussian distribution wher co.
{Aucoh Ao(2)—Au(2)jy— Ab(z)jm} . (5.14)

*We did not do the actual fitting to the space-charge force. fittireg The Stab'l'ty contours for various values of are
was approximated by including an extra factorloin Aqo andA . shown in Fig. 6. The stability contour for octupoles that



—— n=6.0 (near Gaussian) m ALY dent of the longitudinal distribution when the distributio
—— n=2.6 (near cosine square) m Algon

n=1.0 (parabolic) ;0o spreads out more than parabolic. Second, this limit appears

ﬁfg-g o H to be small but without Landau damping it corresponds to
---- n=0 (uniform) / T a growth time 0f0.17 ms which is rather short. Third, we
——-mno sp ch ! : \

0.010 require here an octupole tune spread of the order of 0.05
to generate this amount of stability limit, implying thagth

i

- l . . . e
\ spread of synchrotron tune, if included, may not be signifi-
|

| 0:005 cant here. Fourth, this stability limit decreases rapidihw
\ the decrease in octupole tune spread. For example, 70%
N of the present octupole tune spread will lower the stability
_(')_5‘ ‘_(')_4 e e ‘_0_1‘ Y ‘Oh limit Zm Av? , by one order of magnitude.
Re AV,
Figure 6:(Color) Stability contours for various longitudinal gen- APPLICATION TO FERMILAB BOOSTER
eralized elliptical bunch distributions, from = 0, the uniform NEAR INJECTION

parabolic distribution, taw = 2.6, roughly the cosine square dis-

tribution, and ton. = 6, roughly the Gaussian distribution. It is From Sacherer’s integral equation, the coherent tune
clear that as: increases the stability contour spreads out more arghift Av?, can be solved as a function of the transverse
more reaching and eventually coveriRg Av?, = 0, thus pro- coupling impedancei-. To the lowest order of approxi-
viding Landau damping ifRe Zi-| is not too large. The stability mation without azimuthal mode coupling, the vertical co-
contour for octupole alone without space-charge is alsaslio  herent tune shift for the:th azimuthal mode ankth radial
dashes. mode of theuth coupled-bunch mode dff equally spaced

contribute tune spreads e0).042 < Ar,, < 0.065 in the ab-  bunches each containirig, particles is given by

sence of the space-charge force is plotted in dashes. With [Ayy ] _ rpNy | [Hmk 6.1)
the space-charge force turned on (the octupole detuning cohlumk 2myvy Zy Yo '
per horizontal action in the same direction as the spac@mere

charge detuning), the longitudinal linear particle disfri | |pmk M n < 2
TR . == z Pk (g —we)| 5 (62
tion is varied fromn = 0 to n = 6, while the rms bunch U eq By - (8423 (wq)] klwg—we)|  (6:2)

length is kept fixed at, = 0_.70 m f’:l|| _the.tlme. Here With w, /o = gM + 1+ vy +mus, wo being the angular
n = 0 corresponds to the uniform distribution and its sta-

- ) revolution frequencyg any integer,v, the vertical beta-
bility contour’ (dot-dash) is far from thé&ke Av? , = . .
coh tron tunew: = &,wo/n the chromatic frequency shifg,,

point. Asn increases, the stability contour spreads Ou%he vertical chromaticity, ang the slip factor. The nota-

Even forn = 1 (green), the parabolic distribution, the Sta'tion [Bny (wq)] /3, implies that the transverse impedance

. v . : ]
p'“ty curve covers theRe Ave,, =0 pom_t already, imply Zi- should be summed up item-by-item along the vacuum
ing that there can be Landau damping if the real part of th

Chamber with3, /3, acting as a weight, wherg, is the
transverse impedan¢®e Zi-| is small enough, even when o/ By 9 9 8y

] ) ] L local betatron function an@d, = R/v, is the mean along
there is no inductive contribution from the vacuum cham,_ . . . oo
the ring. In our discussion, the impedance comes mostly

ber._ Whenn mcrgas_es _to 2.6 (que),_ \_NhICh IS roughly _thefrom the wall of the vacuum chamber and the weighted
cosine square distribution, the stability contour exsilait Lo .

Il UMb neafe Av? . —0. The spread of the stabilit summation is therefore not necessary. The ot@er variables
sma q P i COh; ' h P ne y areZ, ~ 376.7 Q the free-space impedance, akg;. the
curve oii ':]O_t |n|crease hy muc (.evezlw _bﬁ.G (ma- spectrum of the linear distribution of excitation of theh
genta), which is close to the Gaussian distribution. azimuthal andkth radial mode. For the Gaussian linear

Some comments are in order. First, the stability IimifjIStrIbUtlon [10],
appears to b&m Av?, ~ 0.002 and is roughly indepen- - - (m+2k) 1 wpo, | ™
Ak (wn) = 1 K(m+k)! | V2
TThis corresponds to a bunch with uniform linear distribatiith half \m ’ 2

bunch length equal/3 o.. The stability contour is different from that in . o (6-3)_
Fig. 1, where the maximum possible space-charge has beemesgy ~Whereo. = 0-/(Bc) is the rms bunch length in time, with

using the bunching factor of a Gaussian bunch. ¢ being the velocity of light.
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0 50 100 150 200 250 300 350 400 Figure 8:Zm Av? , for the most unstable coupled bunch mode
Vertical Impedance (I2/m) L
) u. Note that the most unstable one is slightly away from(the
Figure 7: (Color) Vertical dipole impedance of the Fermilab Q) mode atu = —7 due to finite lamination contribution.

Booster laminated magnets computed by approximating tlee ma
net gap by parallel surfaces. The contribution of the begmegi a result, the laminations, although very resistive, coote
joining the magnets is too small to be seen. little to coupled-bunch instabilities.

We see that, becausg of the spectral content of the  The stainless steel beam pipes joining the magnets
bunch, one value of the eigen-tumg in the dispersion produce a vertical impedance of

function corresponds to a weighted combination of trans-
verse impedance at various frequencies, but only one valuere Z¢ (w) = [sgn(w)—i}
of the coherent tune shift”, . This explains why the sta- Pipe VIw/wol

bility plot is depicted in the complex plane of the coherenfyhich is too small to be visible if plotted together with
tune shift instead of that of the transverse impedance.  the lamination contributions in Fig. 7. However, be-

0.199

MQ/m, (6.4)

cause these pipe contributions are snfail Zi- |lDilDe bends
back to zero at the very low frequency, 100 Hz, and
Protons are injected from a linac into the Fermilad Im Zf_’pipc,max = 12.9 MQ/m. Thus the pipe contri-
Booster at the kinetic energy of 400 MeV and are then cappution may overtake the lamination contribution at low
tured adiabatically intal/ = 84 equally spaced bunches frequencies and becomes the dominating driving force
each containingV, = 6 x 10'° protons. The space-chargeof coupled-bunch instabilities. In fact, at tHe — Q)
force is actually at a maximum slightly into the ramp cy-ine, (w/wy = —0.2), ReZHpipe: —0.43 MQ/m while
cle when the bunch length becomes shorter. Here WéeZﬂlammaﬁon: —0.24 MQ/m. As a result, the contri-
study the situation when the total particle energy becomésition of the lamination can also be important. We com-
E = 1.40 GeV and rms bunch length, = 0.70 m or puted the effective transverse impedance at various cduple
or = 3.15 ns. The transition gamma of the Booster isnodesu, according to Eg. (6.2) including both the lamina-
~v¢ = 5.446 so that the slip factor ig = —0.4154. Since tion and beam pipe contributions, while keeping the chro-
the magnets are unshielded and the beam sees the magnaticity £, = 0. For the azimuthal mode:k = (0, 0), the
laminations, the coupling impedance is dominated by thienaginary parts of the coherent tune shifts corresponding
contribution from the laminated walls. The transverse imto the most unstable coupled-bunch modes are plotted in
pedance of the laminated magnet surfaces have been cdfig. 8. We see that the most unstable modeis —12 and
puted approximately using the method of surface impehe coherent tune shift idv? , = —0.0257 + :0.000228,
dance per square and the method of equivalent transverskich would amount to a growth time of 1.49 ms in the ab-
propagation constant[9]. The openings of these combinesence of Landau damping. With the presence of octupoles,
function magnets are approximated by parallel laminatedis clear that this coherent tune shift is well within tha-st
surfaces and the computed impedance is depicted in Fig.ility region for Gaussian linear distribution in Fig. 6. 0%
Notice that because of the large value of the lamination in&ll coupled-modes are stable when octupoles contribute a
pedanceRe Zi- bends back to zero below 75 MHz. As  tune spread 0f0.042 < Ay, < 0.065.

Coupled-Bunch Instabilities



Sngle-Bunch Head-Tail Instabilities chromaticity is usually at mogt, ~ +10. Evenat;, = 10,

In the studv of sinale-bunch instabilit bstit tthe coherent tune shift iSufoh:—0.255+i0.0022,which
: ) €studyo §|ng.e- unch instabiiity, we subs |.u e|s close to the stability boundary. Most of the time, the Fer-
M = 1 in the effective impedance of Eq. (6.2). Unlike

milab Booster runs at negative chromaticity near injection

the situation of coupled-bunch calculation, now the sum- . . .
P S0 as to guarantee stability of this = 0 head-tail mode.

mation is over every harmonic with the excitation mode, . . . . .
¢ y it factor. H the | q ?t is important to point out that the Fermilab Booster is a

ower spectrum as wei actor. Here, the impedance con- . . . . o
P P 9 P %st ramping machine at 15 Hz, so a slight instability in a

tribution is completely dominated by the laminations of the . L
small energy range is of no significance, because very soon

magnets while that of the beam pipes plays negligible rOI(?he beam particles will be at much higher energies and the
This is because the beam pipes cover only0% of the . .
space-charge force will decrease accordingly.

vacuum chamber and these pipes are of rather large trans-
verse dimension so as to accommodate the space-charge Tq study other head-tail modes, it is most convenient

dominated beam at low energies. We can therefore modgl consider the variables.. We learn from Eq. (6.3) that
the transverse impedance of the Fermilab Booster astige power spectrum of theith azimuthal mode peaks at
broad-band resonance centeredi,at- 85 MHz. wo, = \/|m|. The peak of the broad-band resonance of

) ) the lamination impedance & ~ 85 MHz corresponds
With the neglect of mode-coupling, we need to con-

. . . to w0, ~ 1.7. Thus the peaks of azimuthal excitations
sider only the most prominent radial moke-0. The az- .

) ) ) ) with |m| = 0, 1, 2 are of lower frequency than the res-
imuthal modem = 0 is the one that is most easily sub-

_ ) . ) ) onance peak, the peak of tihe| = 3 mode excitation
ject to instability because of its relatively large poweesp . S .

. i is roughly on top of the lamination resonance peak, while
trum. This mode is most unstable when the mode spe

ﬁw-ose with/m| > 3 lie on the two higher-frequency sides

trum is shifted towards the peak of the broad-band r®SQ%ee Fig. 9). When the chromaticity becomes negative, all

nance a.t hega‘uve frequency (see Fig. 9). This reqUIreSaz%imuthal modes have their spectra shifted to the right to-
chromaticity of¢, = —nf,./ fo ~ 75, wherefo = wy/(27).

} i ] R wards higher frequencies, since we are well below tran-
Detailed numerical summation of the effective impedance,

. ] i ) sition. Modes|m| = 0, 1, 2, 3 will sample more impe-
gives¢, =+99, at whichAv? | =—0.012 +i0.016, which o . .
co dance at positive frequencies and less impedance at neg-

is too large to be Landau damped according to the stability . .
9 P 9 altlve frequencies and are therefore stable. The spectra of

plot of Fig. 6. However, this is of no alarm, because it is not . .
modes|m| > 4 sample more impedance at negative fre-

ossible to operate the Fermilab Booster at such high chro- . .
P o P ) ] 9 quencies and are therefore unstable. Mpdé = 4 will
maticity; the vertical bare tune is only, ~ 6.8 and the

) ] ) become most unstable when the peak of its power spec-
maximum momentum spreadds ==1%. The operational . .
trum is moved by chromaticity to the peak of the reso-

nance impedance. The amount of chromaticity required to

Re Z7 30
(MQ/in) 20 - do so is given by¢,woo,/n ~ VA—+/3, or &, ~ —12.
ol Detailed numerical computation givég = —15 at which
[N B R R Im Av?, = 0.000052, which is not far from our esti-
- - 10 ° i X=00, ‘ mation, remembering that the lamination resonance impe-

dance is not a well-behaved symmetric resonance but has
long high-frequency tails. This value @fn Av? | is well
within the stability region provided by the stability con-

o Fower spectra gy in Fig. 6; the mode is therefore stable. The smallness

needs §,=+99 =- - m=0
— |m|=1 of Zm AvY, comes about because the peak value of the
— |m|=2 |m|th mode power spectrum decreases roughly d&!.
—— |m|=3

This decrease will not be as much if the longitudinal linear

distribution is not Gaussian, but with shorter tails. For ex
1 _2 o 2 x—go, 4 ample, if we consider instead the approximated Sacherer si-

Figure 9: Plot showing shifts of power spectra of azimuthalNUsoidal modes, the peaks of the corresponding azimuthal

modes under chromaticitg, along the frequency axis with re- modes are all separated Byw ~ /(40 ), much farther
spect to the transverse impedarReZ; . apart than the Hermite modes of the Gaussian distribution,




where the total bunch length is assumed tolbe. Then, of ~ 1.5 ms. In the analysis, we assume octupoles sup-
to shift one azimuthal mode to the position of the consecylying action dependent tune spreads-6f.042 < Ay, <

tive mode will require a chromaticity &, =mn/(4woo,), 0.065 in the same direction as the gradient of the space-
which is about three times as much as for the Hermiteharge detuning. Actually, all these coupled modes re-
modes. Such large chromaticity is far from the operationahain stable even if the octupole strength is reduced by one
chromaticity of the Fermilab Booster. Numerical compuhalf. Next, the single-bunch head-tail modes are studied.
tation shows that even up g = —15, the most unstable The worst situation is when thes = 0 mode is shifted
mode is|m| =4 with Zm Av? , =0.00082, still below the by chromaticity towards the resonance peak of the approx-
stability limit. In short, the head-tail modes should all bamated broad-band impedance of the laminated magnets.
stable if the chromaticity is negative and less tharl0  This mode will become unstable whép = 10, which is
units. One important reason behind this conclusion is theutside the operation range of the machine. Wjth< 0,
relatively large slip factor near injectiom (= —0.4154), modesm = 0, +1, £+2, and+3 are stable while modes
which makes chromaticity inefficient in shifting the power|m| > 4 are unstable if there is no octupole damping at
spectra along the frequency axis. This explains why thall. However,Zm Av? | ’s are small for these modes and
Fermilab Booster can often run at theong chromatic- all of them are well inside the stable region of the stability
ity (or positive chromaticity) near injection. This will no plot. This happens because, first, the magnitudes of their
longer be true when the beam energy reaches transitiqggower spectra roll off according ™!, and second, the
Near transition|n| is small and even a small chromatic-relatively large slip factor near injection makes the sigft

ity can shift the power spectra of the azimuthal modes bgf power spectra by chromaticity along the frequency axis
a large amount. Luckily, the space-charge force at thosery inefficient.

energies will become much less, as will its effects on the

o In short, we now understand how octupole tune
stability contours.

spread can provide Landau damping to a bunch with strong
CONCLUSION space-charge, like the ones in the Fermilab Booster, al-

_ _ _ o though such Landau damping may not be possible for a
The dispersion relation of Métral and Ruggiero in thg,, 55ting beam or a bunch with uniform longitudinal distri-

presence of octupole tune spread and space-charge foftgion. There are two issues that have not been answered.
has been extend(.ad to t.hat for a bunch. The Integration s, only non-coupled azimuthal and radial modes have
performed analytically in the two transverse dimension§een considered. When these modes couple, the spread in
gnd numer@ally n the_ longitudinal dimension, reSUItIn_gsynchrotrontuneinthe dispersion relation may become im-
in the stability contour in the complex coherent-tuneshify g tant and cannot be ignored. The dispersion relation for
plane. A wide range of longitudinal linear distributions, bunch, Eq. (5.3), is merely a suggestion of the extension

from uniform to parabolic and Gaussian, have been CoRym that for a coasting beam. Its rigorous derivation i sti
sidered, and their stability contours compared. The resylt,5vailable at the moment.

shows that there will be finite Landau damping provided
that the longitudinal distribution spreads out on both side APPENDIX

more than the parabolic distribution. Let q(z) = [gc — Ao(2)]/S1(2), whereq. = v, —

The stability contour corresponding to the longitudi"¥s —Aoo @ndv. is the eigen-tune of the dispersion rela-
nal Gaussian distribution is applied to the Fermilab Baostdion: Thenli(z), I2(z), and/s(z) are exactly the same in-
near injection when the total particle energy is of 1.40 Ge\jégrals discussed by Métral and Ruggiero [1]. In the closed
First, we look into transverse coupled bunch instabilitiefo™ in terms of¢(z) andc, (z), these integrals give the
for a full ring of 84 equally space bunches. The cohererP!loWing expressions [11]:
tune shift is computed according to the impedance of the 1 )
unshielded laminated magnets and the beam pipes joining~ W{Cl (1= D[¢*@er—1)+2ger+e] +
them together. We find that for the azimuthal mede-0, +g+e)n q+1l
Im AvY s of all coupled-bunch modes are well within g+

the stable region of the stability contour. Without Landau
damping, the most unstable mode will have a growth time

—(e1—1)%¢? [q(2cl+1) + 301] In % }, (A.1)



1
L=+—— —1)[2¢3(3¢2—5¢1+1
2 =+ 240%(01_1)3{01(01 )[24°(3¢1 —5e1+1)+
+ ¢?e1(5e1—11) — 2ger (e14+2) —e1(3er — 1) | —
q+1
—2(q+e1)*l -
(q+c1) nq—i—cl
1
—2(c1—1)3¢3 [q(3cl+1) + 4eq } ln&}, (A.2)
q
1 3.2
Ig =+ m 01(01—1)[2q (Cl—Cl+1)+

+3¢%ci(c1+1) + 6gc3 +c3 ey +1)} +
q+1
qg+c1

—2(c1=1)%¢*[q(c1+1) + 2¢1] In %} (A.3)

+ 2(q + 01)3 [q(?cl— )—i—cl} In

They are all complex variables.

(2]

(3]

(4]

(5]

Their imaginary parts

come from the logarithmic terms. Their values are deter-

mined as follows according to the variahie, the com-

(6]

bined tune shift gradient of the octupole and the transverse
space-charge force defined in Egs. (5.4), (5.6), and (5.11).
For the stability contour, the imaginary part is introduced

by letting

q— q tie fora, 2 0, (A.4)

with € being an infinitesimally small positive number. The

result turns out to be,
for a1 >0,

q+1 q+1 ) 0 qlg+1)>0,
In— =1In +1
q

-7 q(g+1) <0,

0  (¢g+1)(g+c1) >0,

1 1
In et _ In atl +1 (c1—=1) 20 and
q+c1 qg+c +7
(¢g+1)(g+c1) <O,
for a1 <0,

0 q(g+1)>0,

q+1 q+1 )
In— =1n +1
q +7 q(q—|—1)<0,

0  (g+1)(g+c1) >0,

q+1 ‘q+1’
In =In +1 (c1—=1)s 0 and
+ + +
e " { (g+1)(g+c1) < 0.
(A.5)
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