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Abstract 
Superconducting (SC) technology is the only option for 

CW linacs and is also an attractive option for pulsed 
linacs. SC cavities are routinely used for proton and H− 
beam acceleration above 185 MeV. Successful 
development of SC cavities covering the lower velocity 
range (down to 0.03c) is a very strong basis for the 
application of SC structures in the front ends of high 
energy linacs. Lattice design and related high-intensity 
beam physics issues in a ~400 MeV linac that uses SC 
cavities will be presented in this talk. In particular, 
axially-symmetric focusing by SC solenoids provides 
strong control of beam space charge and a compact 
focusing lattice. As an example, we discuss the SC front 
end of the H− linac for the FNAL Proton Driver. 

INTRODUCTION 
High-intensity proton accelerators based on 

superconducting (SC) linacs have experienced a 
spectacular development over the last decade [1]. These 
proton drivers can deliver up to multi-MW beams in 
either CW or pulsed mode (<100 Hz) and are being 
developed for applications such as spallation neutron 
sources, production of radioactive ion beams (RIB), 
transmutation of nuclear waste or neutrino physics. 
Typical kinetic energies for such linacs range from 
40 MeV to 8 GeV. 

Due to the RF power consumption, high duty factor or 
CW operation of high power accelerators is inconceivable 
with Normal Conducting (NC) cavities and SC 
technology becomes the natural choice. Examples for CW 
ion drivers based on SC linacs are the heavy-ion linac 
ATLAS operated at ANL [2] or the multi-user facility 
SARAF [3] being constructed in Israel which is expected 
to deliver in 2010 deuteron beams with an energy of 
40 MeV at 80 kW beam power. The proposed RIB 
facilities AEBL [4] and EURISOL [5] aim at delivering 
ion beams at an energy of respectively >200 MeV/u and 
1 GeV for a corresponding beam power of 400 kW and 
5 MW.  

The development of SC cavities for β<1 gave rise in the 
recent years to several SC pulsed proton drivers. The 
Spallation Neutron Source accelerator (SNS, [6]) at Oak 
Ridge is, as of today, the only pulsed SC proton driver in 
operation. Its final goal is to deliver a proton beam of 1.0 
GeV and 1.4 MW at a repetition rate of 60 Hz for neutron 
scattering research. Several other pulsed SC proton 
drivers are under development for neutron production like 

the Japan Proton Accelerator Research Complex linac [7] 
(J-PARC, 1.3 GeV, 10 MW, 50 Hz) or for neutrino 
physics like the CERN Superconducting Proton Linac [8] 
(SPL, 5 GeV, 4 MW, 50 Hz) or the Fermilab Proton 
Driver [9] (FNAL PD, 8 GeV, 2 MW, 10 Hz). The main 
mission of the FNAL PD is to increase the intensity of the 
Main Injector. This paper describes the physics design of 
the FNAL PD SC front-end (~420 MeV). A detailed 
description of the full linac is presented in [10].  

FRONT END DESIGN 
The main concern in the design of the FNAL PD (as for 

any high-intensity proton linac) is the control of the beam 
losses at a level that allows ”hands-on maintenance”. 
Experience on the LANSCE accelerator at Los Alamos 
has lead the accelerator community to take as a rule of 
thumb that ”hands-on maintenance” is possible if 
uncontrolled losses along the linac are kept below 1 W/m. 
For the FNAL PD operating at 2 MW, this means a 
relative loss of only 5•10-7 particle per meter. As a 
consequence, particular attention has been taken in the 
design of the front-end of the linac to control the growth 
of beam halo that would lead to particle losses.  

Why Spoke Resonator? 
Typical front-end designs for proton drivers are made 

of NC structures (like Drift Tube Linac and Coupled 
Cavity Linac) with a transition to SC ones at high energy: 
160 MeV for the SPL, 185 MeV for SNS or 400 MeV for 
J-PARC. An original approach has been taken for the 
design of the front-end of the FNAL PD. Taking 
advantage of the development and excellent performance 
of spoke cavities [11,12] it was decided to make a 
transition from NC to SC structures at low energy. From 
~10 MeV to ~420 MeV the beam will be accelerated with 
SC Single Spoke Resonators and SC Triple Spoke 
Resonators. Compared to standard NC accelerating 
structures, the SC cavities offer higher accelerating 
gradients and cost-effective operation. Furthermore, the 
use of high-power ferrite vector modulators [13] allows 
the fan-out of RF power from a klystron to feed multiple 
cavities. With this outstanding feature of the FNAL PD, 
only five J-PARC type 2.5 MW klystrons are necessary to 
power the 420-MeV front-end of the linac while, for 
instance, the SNS 186-MeV front-end requires 
11 klystrons. 

Why Superconducting Solenoid ? 
SC solenoids have been selected as the focusing 

elements for the front-end (up to ~120 MeV limited by H−  
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stripping) of the FNAL PD in lieu of the standard 
quadrupole structures. 

The idea of using SC solenoids in the front-end of high-
intensity SC proton linacs was discussed conceptually by 
Garnett [14]. Our design differs from [14] by efficient use 
of the available voltage from SC cavities and provides 
much higher real-estate gradients tighter with better 
control of space charge by reduced length of the focusing 
periods. 

Several advantages arise from the use of SC solenoids: 
• to provide stability for all particles inside the 

separatrix the defocusing factor 
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    should be kept below ~0.7. SC solenoids shorten the 
length of the focusing period (by a factor of 2 
compared to FODO focusing) which facilitates the 
use of the higher accelerating gradients offered by 
the SC cavities. In Eq. 1 : m0c

2 is the particle rest 
energy, β is the particle relative velocity, γ is the 
Lorentz factor, λ is the wavelength of the RF field, Lf 

is the length of the focusing period, Em is the 
amplitude of the equivalent traveling wave of the 
accelerating field and φs is the synchronous phase 

• the smooth axial-symmetric focusing provided by SC 
solenoids in the MEBT mitigates the formation of 
halo which can take place with weak asymmetric 
focusing as observed at SNS [15] 

• as discussed in [16], lattices using SC solenoids are 
less sensitive to misalignments, errors and beam 
mismatches. 

 
Furthermore, SC solenoids are perfectly suitable for SC 

environment with SRF.  SC solenoids are easily re-
tunable to adjust to the accelerating gradient variation 
from cavity to cavity and can they can also be 
supplemented with dipole coils for corrective steering of 
the beam centroid. SC solenoids have been used at 
ATLAS facility for several decades [2] and implemented 
in new facilities such as ISAC-II [17] and SARAF [3]. 

FNAL Proton Driver front-end lattice 
A schematic layout of the front-end of the FNAL PD is 

presented in Figure 1. The different sections of the linac 
with corresponding main parameters are presented in 
Table 1. The linac front-end is made of 73 focusing 
periods with lengths varying from 49 cm to 3.8 m. The H− 
beam from the Ion Source is bunched and accelerated up 
to 2.5 MeV by a 325 MHz RFQ. At that energy the 
MEBT section provides space for a fast beam chopper 
(<2 ns) to eliminate unwanted bunches and forms an 
optimal beam time structure for injection into the Main 
Injector. This chopping decreases the beam average 
current over the 1 msec pulse from ~45 mA to ~25 mA. 
Acceleration from 2.5 MeV to 10 MeV is provided by 16 
room temperature cross-bar H-type (CH) cavities. The 
CH cavities, foreseen for the future proton synchrotron of 
GSI [18], present very high shunt impedance 
(90 MOhm/m to 60 MOhm/m) and are an excellent 
option. The use of SC technology is not appropriate for 
this energy range as it would require time-consuming and 
expensive development of multiple SC designs. Above 10 
MeV, SC RF structures are used. Two types of Single 
Spoke Resonators and one type of Triple Spoke 
Resonator (SSR1, SSR2 and TSR) accelerate the beam up 
to ~420 MeV. At this energy, spoke cavities become less 

Figure 1: Schematic layout of the front-end of the FNAL 8-GeV superconducting linac. 

 

Table 1:  Main parameters for each section of the front-end linac with focusing type (S: Solenoid, R: Resonator, nR: 
n Resonators, F: Focusing quad. and D: Defocusing quad). 

Section 

No. 

Section 

Name 

Wout 

(MeV) 

Cavities 

No. 

Focusing  

Type 

Period 

No. 

Lf 

 (m) 

  z 

(m) 

1 CH 10 16 S1R 16 0.49-0.75 17 

2 SSR1 32 18 S1R 18 0.75 31.4 

3 SSR2 124 33 S2R 18 1.6 61.0 

4 TSR 421 42 FRDR 21 3.8 142.2 

        

Total  ~421 109  73  ~142.2 
 



efficient and the beam is further accelerated up to 8 GeV 
using Squeezed ILC (βg=0.81) and ILC (βg=1) 1.3 GHz 
cavities. The frequency transition at 420 MeV is favorable 
to longitudinal beam dynamics [10].   

FRONT END SIMULATIONS 
The main tool used for the design of the FNAL PD is 

the beam dynamics code TRACK [19]. For benchmarking 
purposes, the simulations have also been performed with 
the code ASTRA [20] developed by DESY. Mainly used 
for the design of electron photo-injectors, it offers also the 
possibility of simulating hydrogen ion beams.  Both codes 
handle 3D space charge. Benchmarking starts at the RFQ 
exit since ASTRA does not cover RFQ beam dynamics.  

 

The Radio Frequency Quadrupole 
The FNAL RFQ is ~3 m long and is capable of efficiently 
accelerating bunch beam currents up to 140 mA. The 
RFQ physics design and beam dynamics simulations were 
presented elsewhere [21].  One original point in the 
design of the RFQ is the use of an output radial matcher 
to produce axially-symmetric beam. Particular attention 
was taken to preserve transverse emittance and to 
minimize the longitudinal emittance while maximizing 
the accelerating rate.  
 

Front-end beam dynamics 
The design of the FNAL PD has been performed 

following the general design requirements for high-
intensity proton linacs [10] necessary to minimize RMS 
emittance growth along the linac: 

• keep the zero current phase advance per focusing 
period in all planes below 90° to avoid 
parametrically-excited instabilities at high current 

• provide smooth evolution of the wavenumbers (kT0, 
and kL0) of both transverse and longitudinal 
oscillations along the linac. This feature minimizes 
the potential for mismatch and helps assure a current 
independent lattice. The wavenumbers of particle 
oscillations are expressed as 
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the transverse and longitudinal phase advance per 
focusing period of length Lf at zero current 

• avoid the n=1 parametric resonance between the 
transverse and longitudinal motion. The condition for 
occurrence of an n-th order parametric resonance of 

transverse motion to occur is 00 2 LT

n σσ = . The 

strongest resonance is for n=1 and can occur 
particularly in SC linacs due to the availability of 
high accelerating gradients and relatively long 
focusing periods. It can be avoided by properly 

choosing the linac operation tunes in the 
Kapchinskiy stability diagram 

• avoid strong space-charge resonances by selecting 
stable areas in the Hofmann’s stability charts or use 
fast resonance crossing 

• maintain beam equipartitioning to avoid energy ex-
change between the transverse and longitudinal 
planes that can occur via space-charge forces 

 
For NC linacs all the above listed requirements can be 

fulfilled with peak currents up to ~150 mA as presented 
in reference [22]. Cost-effective SC linacs are more 
challenging for satisfying these specifications. For 
example, cavities and focusing elements in SC linacs are 
located in relatively long cryostats with inevitable drift 
spaces between them. Also, the focusing period lengths 
can present a sharp change at transitions between linac 
sections with different types of cavities. 

Figure 2 presents TRACK and ASTRA simulations of 
the FNAL PD font-end linac at zero current. The variation 
of the transverse and longitudinal phase advance along 
the linac is presented in Fig. 2(a). The observable, but 
insignificant, difference between the phase advances from 
TRACK and ASTRA comes primarily from the different 
technique of calculation of the phase advances. Due to the 
changing length of the focusing period at transitions 
between different types of SC cavities, the phase 
advances present strong but innocuous jumps. Apart from 
few periods, the phase advances remain below 90°. 
Figure 2(b) shows the smooth change of the transverse 
and longitudinal wavenumbers along the linac. The 
smooth evolution of the transverse wavenumber is 
provided by selecting the appropriate length of the 
focusing periods (as shown in Table 1) and focusing field 
strengths. Concerning the longitudinal wavenumber, 
smooth evolution is obtained by properly adjusting the 
synchronous phase of each cavity. The Kapchinskiy 
stability diagram [Fig. 2(c)] presents the evolution of 
cos(σ0T) as a function of the defocusing factor γs (Eq. 1). 
The gray area corresponds to the n=1 parametric 
resonance and the dashed line corresponds to the stability 
required for the particles near the separatrix boundary at a 
phase angle of -2|φs|. The majority of the 73 period tune 
points are located in the stable areas of the Kapchinskiy 
diagram. The few tune points located outside the stability 
region correspond to the first focusing periods of the CH 
section. These regions present essentially no problem 
since the instability takes place over a short distance 
compared to the betatron oscillation wavelengths.  

Figure 3 presents the Hofmann’s stability chart [23] for 
the FNAL PD front-end at the design current of 45 mA 
for a longitudinal to transverse emittance ratio of εL/εT=2. 
The shaded areas indicate regions where 
nonequipartitioned beams are subject to space charge 
coupling resonances that are expected to cause emittance 
transfer. The dangerous resonance in the chart is the 4-th 
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Figure 2: TRACK and ASTRA simulations of the FNAL 
PD front-end at zero current : (a) trans. and long. phase 
advances, (b) trans. and long. wavenumbers and 
(c) Kapchinkiy stability diagram. The gray area in 
(c) shows the boundary of the n=1 parametric resonance 
and the dashed line particle located near the separatrix. In 
(c) circles represent TRACK and crosses ASTRA. 

 

order even mode one located around a tune ratio of 1. The 
peaks on the left represent weak coupling resonances that 
would take a long time to develop. As depicted in Fig. 3, 
TRACK and ASTRA predict a moderate tune depression 
(between 0.5 and 0.8) with most of the operating tunes 
lying in stable (white) areas. Therefore space charge 
driven resonances are not a concern for the current design 
of the FNAL PD front-end. 
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Figure 3: Hofmann’s chart for a long. to trans. emittance 
ratio of 2. See text for details. Courtesy of I. Hofmann. 

Emittance growth and beam losses 
Figure 4 shows simulated transverse and longitudinal 

emittance growth for the FNAL PD front-end which is at 
an acceptable level and is mainly due to imperfection 
matching at the lattice transitions.  A detailed beam loss 
analysis of the full linac reported in [24] using TRACK 
shows that the actual design indicates very limited losses 
for typical misalignments and RF errors. The use of SC 
cavities with large apertures enables the ratio aperture-to-
RMS-beam-size to stay higher than 10 in most of the 
linac which helps avoid losses. 

0 20 40 60 80 100 120 140
0.8

1

1.2

1.4

1.6

1.8

2

2.2

z (m)

R
M

S
 e

m
itt

an
ce

 g
ro

w
th

 fa
ct

or

 

 

TRACK
ASTRA

ε
Z

ε
Y

ε
X

 

Figure 4: RMS trans. and long. emittance growth factor in 
the FNAL PD front-end at 45mA. From TRACK and 
ASTRA with 2•105 macro-particles. 



Front-end at 100 mA 
The front-end design developed for the FNAL PD can 

be successfully applied for acceleration of 100 mA 
proton/H− beams. As was shown by LANL during the 
work on several projects, for high-intensity beams above 
~100 mA it is reasonable to use an RFQ up to ~7 MeV. 
Below we discuss a front-end based on the FNAL PD 
lattice but with 7 MeV RFQ. For the purpose of beam 
dynamics simulations we assume that perfect 6D 
matching is provided at the entrance of the linac at 
7 MeV. The lattice beyond 7 MeV is the same as in FNAL 
PD linac with slightly different geometrical beta of SSR1 
and SSR2 for better matching to beam velocity. As shown 
in Figure 5 good beam matching is provided in the 
transitions resulting in a very low emittance growth factor 
of the 100 mA beam. Even the 99.5 % total emittance 
depicted in Fig. 5(b) presents a moderate growth factor 
indicating a limited halo formation. 
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Figure 5: Front-end from 7 MeV to 420 MeV at 100 mA: 
(a) beam envelopes and (b) 100% RMS and 99.5% total 
emittance growth factor. From TRACK. 

CONCLUSION 
A SC front-end presents a competitive option for high-

intensity ion linacs, not only in terms of power 
consumption but also to ensure high-quality beams. The 

front-end of the FNAL PD accelerates beams from the Ion 
Source up to 420 MeV using CH cavities to ~10 MeV 
followed by SC spoke (SSRs and TSRs) resonators. All 
operate at the 4th sub-harmonic of the ILC frequency. The 
use of SC solenoids results in a compact lattice below 
~120 MeV and facilitates the use of the high accelerating 
gradients offered by the SSR cavities. Also SC solenoids 
help mitigate halo formation and beam losses. 
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