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Abstract 
Profile diagnostic devices for Charged-particle beams 

diagnostic provide data sets describing the one-
dimensional density distributions at particular locations. 
We explore requirements and methods computation of 
beam position and size from profile data. Typically these 
data require subjective, human, processing to extract 
meaningful results, which is inefficient and labor 
intensive. Our goal is to automate such computations, or 
at least streamline the process.  

INTRODUCTION 
Here we describe properties of profile data, which are 

called projection data in tomography applications. These 
data are typically obtained from particle-beam diagnostic 
devices such as wire scanner, laser strippers, or wire 
harps. Each device provides multiple “views”, or 
projections, of the underlying particle beam distribution at 
specific beamline locations. We provide *a model for the 
data collection process which includes random noise 
components.  Our goal is automating the estimation of 
beam parameters from profile data, explicitly the position 
 In turn, these values can be used for Twiss .ߪ and size ߤ
parameter estimation, transverse matching, and halo 
identification and mitigation. In order to implement any 
automation we must make real world considerations. 
Specifically, we consider information content, noise, and 
sampling theory.   

Sampled Data and Noise 
Let x  represent a transverse beam axis. Then denote the 

set of measurements obtained from the diagnostic device 
as ሼ݉௞ሽ௞ୀଵே . These ordered measurements correspond to a 
respective set of axis locations ሼݔ௞ሽ௞ୀ଴ேିଵ.  We take the axis 
locations to be equidistant so that ݔ௞ ൌ ଴ݔ ൅ ݄݇, ݇ ൌ
0,… ,ܰ െ 1, where ݄ ൐ 0 is the (constant) step length and 
the quantity ݔ଴ is an offset. This situation is represents a 
sampled-data system. Now say the projection of a beam 
distribution is represented by the (absolutely) continuous 
function ݂ሺݔሻ . Our objective here is to reconstruct a 
reasonable approximation of f from the measurements 
ሼ݉௞ሽ. Making the convenient definition 

௞݂ ؜ ݂ሺݔ௞ሻ 

then ሼ ௞݂ሽ is the sampling of the profile f.   
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Gaussian Signal 
A common practice used on the field is to assume that f 

has a Gaussian profile. (It can be shown in the limit of 
zero space charge the Gaussian is a stationary beam 
distribution [2].) For the general case, we will need four 
parameters to identify such a signal: amplitude A, 
mean  ݄ߤ, standard deviation ݄ߪ, and offset B. Note that 
we have normalized ߤ and ߪ by the step length h so that 
they are in units of ‘number of samples’. The familiar 
continuous Gaussian form is 

݂ሺݔ; ,ܣ ,ߤ ,ߪ ሻܤ ൌ ି݁ܣ
ሺ௫ି௛ఓሻమ
ଶ௛మఙమ ൅  ሺ1ሻ               .ܤ

By looking at the sample locations ሼݔ௞ሽ we get the four-
parameter, sampled form  

௞݂ሺܣ, ,ߤ ,ߪ ሻܤ ൌ ି݁ܣ
ሺ௞ିఓሻమ
ଶఙమ ൅  ሺ2ሻ                .ܤ

Moments 
The ݊௧௛ moment ݔۃ௡ۄ of a distribution ݂ is defined  

ۄ௡ݔۃ ؜
1
ܳ න ݔሻ݀ݔ௡݂ሺݔ

ାஶ

ିஶ
, 

where normalization constant Q is given by ܳ ؜ ׬  ,ݔ݂݀
the total mass.  Because we are dealing with sampled data 
we can only approximate these values.  The simplest form 
of approximation would be to replace the integration with 
a finite summation.  We begin with a definition to simply 
the sequel 

ܵ௡൫ത݇൯ ؜ ෍ሺ݇ െ ത݇ሻ௡݂௞

ேିଵ

௞ୀ଴

                      ሺ3ሻ 

Then, the ݊௧௛ (discrete) moment centered at ത݇ is given as 
൫݇ۃ െ ത݇൯௡ۄ ؜ ܵ௡ሺത݇ሻ/ܵ଴ሺ0ሻ . The conversion between 
ݔሺۃ െ ۄҧሻ௡ݔ  and ۃ൫݇ െ ത݇൯௡ۄ  is given by the step length 
power ݄௡ , that is, ۃሺݔ െ ۄҧሻ௡ݔ ൎ ݄௡ۃ൫݇ െ ത݇൯௡ۄ, where 
ҧݔ ൌ ݄ത݇.  

Another possible approach for computation of ۃሺݔ െ
 would be if we were certain that f was band-limited ۄҧሻ௡ݔ
by 1/2h; then a formula such as ሺ4ሻ  below could be 
employed.  However, the non-causal impulse response 
sinc would need to be replaced by some filter having 
causal response. The moment computation would be 
affected by the choice of filter. We may well wish to 
pursue this idea; however, we still have not addressed 
reconstruction of f in the presence of noisy measurements. 



RECONSTRUCTION 
Theoretically, if ݂ሺݔሻ is band-limited in frequency by 

the Nyquist rate േ1/2݄ , then the Shannon sampling 
theorem states that [1][3] 

݂ሺݔሻ ൌ෍ ௞݂ sinc ቀ
ݔ
݄ െ  ݇ቁ

௫/௛

௞ୀ଴

,                      ሺ4ሻ  

where sinc ݔ ؜ sin ݔ ଴ݔ and we have taken ݔ/ ൌ 0.  If we 
only look at the points ݔ௟ ൌ ݈݄, ݈ ൌ 0,… ,ܰ െ 1 then the 
above simplifies to the discrete convolution ௟݂ ൌ
∑ ௞݂ sincሺ݈ െ  ݇ሻ௟
௞ୀ଴ .  Because the sinc function is non-

casual, the above convolution is impractical. Typically a 
finite impulse-response linear filter is used in lieu of the 
sinc response. 

We can get an appreciation for the step size h needed to 
accurately represent f by considering the Gaussian case 
ሺ1ሻ. The Fourier transform of a Gaussian with standard 
deviation ݄ߪ is also a Gaussian, with standard deviation 
ߤ specifically, with ;ߪ݄/1 ൌ ܤ ൌ 0, the transform is 

መ݂ሺ߱ሻ ؜   ृሾ݂ሿሺ߱ሻ ൌ ି݁ߪߨ2√ܣ
ఙమఠమ

ଶ .                 ሺ5ሻ 

From the Nyquist criterion we know the largest frequency 
content ߥ௠௔௫ in ሼ ௞݂ሽ is 1/2݄ [4]. The percentage of power 
remaining in the sampling process is given by 

ܲ ൌ න ห መ݂หଶሺ߱ሻ݀߱
ାగ௛

ିగ௛

/න ห መ݂หଶሺ߱ሻ݀߱
ାஶ

ିஶ
, 

   ൌ erfሺ2/ߪሻ, 

where, recall, sigma is normalized by step length h. 
 
 3.0 2.5 2.0 1.5 1 ߪ
ܲ 52.1% 71.1% 84.3% 92.3% 96.6% 

Table 1: Signal power versus samples/sigma 

Table 1 demonstrates that a standard deviation between 
two and three steps wide will preserve a reasonable 
amount of profile information. 

NOISE 
The presence of noise introduces indeterminacy.  

Henceforth we can only generalize in terms of 
probabilities and stochastic (or “random”) processes.  
Denote by Eሾڄሿ  the expectation operator of a random 
variable, averaging over the ensemble. Then for any 
random variable R, തܴ ؜ Eሾܴሿ is the mean. The quantity 
ோߪ ؜ Eሾሺܴ െ തܴሻଶሿଵ/ଶ  is the standard deviation, or 
variance. A random process is a random variable that 
varies in position, that is, ܴ ൌ ܴ௞. The values of a random 
process are not deterministic, but their statistics are; 
notably തܴ ൌ തܴ௞ and ߪோ ൌ  ோ,௞. Most noise processes areߪ
modeled as random processes. 

The measurement ݉௞ is composed of both the actual 
beam profile ௞݂ plus a noise component ௞ܹ, where ௞ܹ is 
part of a random process. Take the process ሼ ௞ܹሽ to be a 
Gaussian distributed white noise process with mean B and 
variance V, then ௞ܹ ൌ ܹ  for all k, and W is Gaussian 
distributed.  We have 

݉௞ ൌ ௞݂ ൅ܹ, ݇ ൌ 0,… ,ܰ െ 1        ሺ6ሻ 

where  

Prሺܹ ൌ ,ܤ|ݓ ܸሻ ൌ
1

ܸߨ2√
݁ି

ሺ௪ି஻ሻమ
ଶ௏మ .                 ሺ7ሻ 

The notationPrሺܯ௞ ൌ ݉௞|ܤ, ܸሻ indicates the probability 
that the measurement (random variable) ܯ௞  at axial 
position ݔ௞ has value ݉௞, given that the noise has mean B 
and variance V.     

Computations with Noise 

  
Figure 1: ࢑ࡺ൫࢑ഥ൯ for n=2 and N=100 

Computations involving random processes require that 
we properly observe their statistics. Considering the direct 
moment calculations based upon  ሺ3ሻ we define 

ሚܵ௡൫ ത݇൯ ؜ ෍൫݇ െ ത݇൯௡ሺ݉௞ െ ሻܤ
ேିଵ

௞ୀ଴

,                    ሺ8ሻ 

the weighted central summations of the measurements.  
The expected value of this computation is 

ൣܧ ሚܵ௡ሺത݇ሻ൧ ൌ ෍൫݇ െ ത݇൯௡
ேିଵ

௞ୀ଴

ሾሺ݉௞ܧ െ ሻሿܤ ൌ ܵ௡൫ത݇൯ ሺ9ሻ 

since ܧሾڄሿ is a linear operator.  The variance of ሚܵ௡ሺ ത݇ሻ is a 
more involved computation, the result is 

ܧ ቂቀ ሚܵ௡൫ത݇൯ െ ܵ௡൫ത݇൯
ଶቁቃ

ଵ
ଶ ൌ ௡ܰ൫ത݇൯ܸ                ሺ10ሻ 

where ௡ܰ൫ ത݇൯ ؜ ∑ ൫݇ െ ത݇൯௡ேିଵ
௞ୀ଴  is a form of the Riemann 

zeta function. This function can become enormous with 
relatively moderate values of n and N, as demonstrated in 
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Figure 1. Ironically, as evident from the figure, increased 
sample count provides more certainty in f but less in 
ܵ௡ሺത݇ሻ. The conclusion is that we are unable to ascertain 
meaningful results from the approach of Eq. ሺ8ሻ. 

Bayesian Methods 
A common technique is to compute the probability 

density function (i.e., p.d.f.) for a measurement process, 
then find the distribution ሼ ௞݂ሽ  that (locally) maximizes 
this p.d.f., a Bayesian method. A major drawback here is 
that we usually require the assumption of a given profile 
for f to be useful.  

Take f to be a Gaussian so that ௞݂ is given by ሺ2ሻ. Note 
that Prሺܯ௞ ൌ ݉௞|ܤ, ܸሻ  is the same as Pr ሺܹ ൌ ݉௞ െ
௞݂|ܤ, ܸሻ, the probability that ௞ܹ ൌ ௞ܯ െ ௞݂ given B and 

V. From ሺ7ሻ , assuming that each measurement is 
independent, the probability of obtaining all the 
measurements ሼ݉௞ሽ is 

Prሺሼ݉௞ሽ|ܤ, ܸሻ ൌෑPrሺ݉௞|ܤ, ܸሻ
ேିଵ

௞ୀ଴

ൌ
1

ሺ2ߨሻ
ே
ଶ

1
ܸே ݁

ିఞ
మ

௏మ 

where 

߯ଶሺܣ, ,ߤ ,ߪ ሻܤ ؜ ෍ሾ݉௞ െ ௞݂ሺܣ, ,ߤ ሻߪ െ ሿଶܤ
ேିଵ

௞ୀ଴

.    ሺ11ሻ 

We are interested in the most probable values of ܣ, ,ߤ  ,ߪ
and B given the measurements ሼ݉௞ሽ(the noise variance V 
contributes nothing). However, Bayes’theorem states that 

Prሺܣ, ,ߤ ,ߪ ሼ݉௞ሽሻ|ܤ ן Prሺሼ݉௞ሽ|ܣ, ,ߤ ,ߪ ሻܤ Pr ሺܣ, ,ߤ ,ߪ  ሻܤ

The final factor above is called the prior distribution, 
consisting of all the information we know about ܣ, ,ߤ  ,ߪ
and B prior to the measurements. Immediately note that ߤ 
and B are independent and uniformly distributed. Quantity 
B requires a calibration experiment and, unless we have 
prior knowledge of the scanner and beam position we can 
presume nothing about ߤ . The values of A and ߪ  are 
related by the ܳ ൌ  .where Q is the beam charge ,ܣߪߨ2√
The measurement system cannot be guaranteed to produce 
the exact beam charge, the best we can assume is that 
Prሺܣ, ሻߪ ൌ Pr ሺܳሻ , a uniform distribution 
andPrሺܣ, ,ߤ ,ߪ ሻܤ ൌ Prሺܣ, ,ߪ ሻ Prሺߤሻ Prሺܤሻ ൌ  The  .ݐݏ݊݋ܿ
most probable distribution ሼ ௞݂ሽ  is then the most likely 
distribution based upon maximizing ߯ଶ  in ሺ11ሻ . This 
results in a simple least-squares fit to the data ሼ݉௞ሽ. 

Gaussian Fitting 
Including B as a parameter in the fit eliminates the need 

for a calibration experiment. We have found that Gaussian 
fitting is robust concerning noise and the parameters 
,ܣ ,ߤ and ߪ, see Figure 2.  However, as shown in Figure 3, 
Gaussian fitting fails to provide an accurate ߤ and ߪ for 
signals with significant (asymmetric) halo. 

 
Figure 2: Gaussian fit for noisy signal 

 
Figure 3: Gaussian fit for signal with halo 

CONCLUSIONS 
Referring to Table 1 the selection of sampling step is an 

important part in the accurate representation of the beam 
distribution.  From the discussion on computations with 
noise, attempting to directly compute position and, more 
significantly, beam size is difficult (if not impossible).   
Gaussian fitting works well with noisy data but fails to 
provide accurate values when halo is present. The use of 
double-Gaussian fits has been suggested and would 
appear appealing for signals with symmetric halo 
components, this is currently being pursued. 
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