
FUTURE OF TANGO

Andy Götz, Jens Meyer, Emmanuel Taurel, Jean-Michel Chaize, Pascal Verdier,
Faranguiss Poncet, ESRF (Grenoble, FRANCE), Majid Ounsy, Nicolas

Leclercq, Alain Buteau, SOLEIL (Paris, FRANCE), Claudio Scafuri, Marco
Lonza, ELETTRA (Trieste, ITALY), David Fernandez-Carreira, Jörg Klora,

ALBA (Barcelona, SPAIN), Thorsten Kracht, DESY (Hamburg, GERMANY)
on behalf of the Tango Collaboration

Abstract
Tango is a control system based on the

device server concept. It is currently being
actively developed by 5 institutes, 3 of which
are new institutes. In October 2006 the
Tango development community met at the
Hotel des Skieurs in the French Alps to
discuss the future of Tango. This paper
summarises the conclusions of this meeting.
It presents the different areas Tango will
concentrate on for the next 5 years. Some of
the main topics concern services, beamline
control, embedded systems on FPGA, 64-bit
support, scalability for large systems, faster
boot performance, enhanced Python and Java
support for servers, more model-driven
development, and integrated workbench-like
applications. The aim is to keep powering
Tango so that it remains a modern, powerful
control system that satisfies not only the
needs of light-source facilities but other
communities too.

PHILOSOPHY
The philosophy of Tango has right from the

beginning been to build a modern control
system which is constantly being improved
based on user needs and technology trends.
This kind of approach needs resources and
constant reflection on how to improve Tango.
Agreeing on needs is helped by the fact that
the Tango development community consists
largely of synchrotron light sources.
However, technological trends are more
difficult to agree on. Often there are as many
opinions as participating institutes. This
paper presents the current reflections of the
Tango community on how Tango will evolve in
the future based on the philosophy of
constant improvement.

CURRENT STATUS
Tango is just over 5 years old and is been

adopted by 5 institutes in the following
domains:

● ESRF – accelerator and beamline
control

● SOLEIL - accelerator and beamline
control

● ELETTRA – accelerator control
● ALBA - accelerator and beamline

control
● PETRA III (DESY) – beamline control

The institutes share the following in Tango:

1. the CORBA protocol
2. the device server model
3. the database
4. management tools
5. navigation + test tools
6. common device servers
7. a tool to generate device servers
8. an archiving database

Institutes do not share:

● device servers for institute specific
hardware

● graphical user toolkits for building
user interfaces

● domain specific applications for
accelerator physics, beamline
control, online data analysis

Tango is very flexible and does not impose
constraints on the choice of hardware or the
operating system (Tango runs on Linux and
Windows). Due to this flexibility and the fact
that there is a huge variety of hardware to
choose from, each institute has made
different hardware choices. This means that
in practice an institute which adopts Tango
invests a significant amount of its resources
in writing device servers. This could be
avoided by sharing hardware choices
between institutes but the advantage of
choosing hardware based on institute specific
criteria is mostly seen as an advantage.

This is similar for the choice of graphical
user interfaces. Tango supports language
bindings to the following languages:

● C++
● Java
● Python
● Matlab
● Labview
● Igor

Each institute has expertise and preference
for a subset of these languages and their
graphical toolkits. This means that it is
difficult to agree on only one single graphical
toolkit. In practice this results in each
institute creating and maintaining their own
graphical user interface.

Domain specific solutions are what the end-
user is most interested in. The aim of the
Tango community is to share as much as
possible in this area.

CONSTANT EVOLUTION
Tango has been constantly improved since

its inception. This can be readily seen from
the plot of the Tango major version release
dates:

TANGO - QUO VADIS ?
The October 2006 meeting on the future of

Tango decided that Tango should concentrate
on the following areas:

● the development collaboration
● stability, quality and packaging
● scalability and reliability
● new needs-driven features
● more and improved tools
● sharing of domain specific solutions

TANGO FEATURE REQUESTS
In order to identify and track the evolution

of Tango the Tango Feature Request system
has been proposed. New features to be added
to Tango are registered as Tango Feature
Requests (TFR's).

COLLABORATION
Collaboration is the key to the continuous

evolution of the Tango control system. In the
future we need to find ways to strengthen the
collaboration and actively work on common
projects. Improvements to the Tango core
would be implemented more efficiently if the
collaboration financed one or two dedicated
system developers. This leads to the first
Tango Feature Request for the future:

TFR 1: each member institute must actively
work on a part of the Tango core

STABILITY, QUALITY, PACKAGING
Stability is an essential part of any

software system and even more when it is
used to control complicated expensive
apparatus like accelerators and experiments
24 hours a day, 7 days a week. The first
requirement for the future of Tango was to
consolidate the existing version of Tango.
Although Tango is stable (a major release is
made on average once every 12 months) it
was decided to concentrate on bug fixes
rather than new features for the next major
release. After that emphasis will be put on
new features again. This was done between
V5 and V6. The next major release will
concentrate on new features again.

Software Quality measures how well
software is designed, and how well the
software conforms to that design. The design
of the Tango libraries is maintained by a
small group of system developers. They take
input from the community and ensure that
the design satisfies the needs. The developer
team is open to all member institutes of
Tango. Tango currently has a test system for
the system libraries which tests that the
features are correctly implemented. There is
currently no test system for device servers,
hence the following feature request for the
future in Tango:

TFR 2: automatically generate unit tests for
device servers

Packaging and documentation are
considered to be the main problems faced by
new users to Tango. Good packaging makes
the difference between pain and pleasure in
the life of a system integrator. Tango offers
source code packaging of the system libraries
for Linux platforms and binary code
packaging for Windows platforms. There is
currently no packaging system for device
servers. Therefore in the future the following
request will be satisfied:

TFR 3: adopt a packaging system for device
servers which supports source and binaries

Documentation is a strong and weak point
in Tango. A lot of documentation exists for
Tango - the Tango book is almost 500 pages
long, but it is difficult to keep up to date.
Tango will adopt a new system of
documentation which is easier to keep up to
date and which is generated automatically as
much as possible:

TFR 4: reorganise and update the Tango
book

SCALABILITY AND REDUNDANCY
Tango is based on a binary protocol

(CORBA) which is fast and has little
overhead. The exchange of information
between clients and device server is totally
distributed - control system clients have a
dedicated link to servers. An event system
allows efficient asynchronous communication
between hundreds of clients and hundreds of
servers. However Tango has scaling problems
when thousands of servers are started
simultaneously. The central database forms a
bottleneck due to increased traffic from
servers and clients. This bottleneck needs to
be solved for Tango installations with
thousands of devices e.g. the size of the
ESRF, SOLEIL, or even bigger installations
like the ILC:

TFR 5: distribute the load of the tango
naming service to be able to support tens of
thousands of servers and clients starting
simultaneously

Reliability is an essential feature in high
availability systems. One way of increasing
reliability is by means of redundancy. Tango
supports redundancy for the central database
but not for device servers. Therefore in the
future:

TFR 6: add redundancy for device servers
which will enable multiple copies of the same
device to be running with automatic switch
over in the case of failure

NEW FEATURES
As part of the constant evolution philosophy

adopted by Tango there is a list of minor and
major new features to add in the future. Note
that some of the features listed here require
the Tango libraries to be refactored to make
sure the code remains logical. Here is a list of
features which have been requested to be
added to Tango in the future:

Tango device servers can be written in
C++, Python or Java. The Java servers have
fallen behind the other two languages:

TFR 7: update the Java server framework

Multi-channel hardware is very common in
control systems. It would be useful to have a
multichannel device class to optimise access
to multi-channel hardware:

TFR 8: implement a multi-channel device
class in the Tango device library

Security is available as a service for Java
clients. This needs to be extended to C++
clients:

TFR 9: extend security service to C++
clients

It is often useful to limit the choice of user
input. Enumerated data types are the obvious
way to go:

TFR 10: add enumerated data types to the
Tango data types transferred over the
network

Tango data types are raw types in the sense
that they represent sequences of simple data
types with a minimum of information on what
the data mean e.g. voltage, current. It would
be useful to be able to transmit so-called
“cooked” data types with pre-defined data
representations e.g. JPEG, TIFF, Nexus data
file, etc.:

TFR 11: add cooked data types to Tango

Performance at device startup time can be
improved by implementing a cache of device
properties:

TFR 12: cache device properties in the
database server

Tango uses a polling thread to generate
events. There is currently only one polling
thread per server. Performance can be
improved in the future by extended the
polling thread to one per device:

TFR 13: extend polling thread to one per
device

SERVICES
A major trend in distributed computing is

the widespread use of Service Oriented
Architecture (SOA). SOA encourages
decoupling of clients and servers by using
generic user interfaces to provide access to
services. Tango already has a security
service. Tango will be extended to support
user services e.g. computation services, via a
new services-oriented interface:

TFR 14: extend the Tango API to add
support for system and user services

MODELLING
Model driven architecture (MDA) is a useful

programming technique for generating
source code from models. The Tango tool for
generating and writing device servers, Pogo,
generates source code from the
programmer's model of the device server.
Pogo uses its own libraries to parse the
source and generate source. In the future we
will investigate how open source tools for
model driven development (MDD) could
improve Pogo. MDD is an essential part of
any software system, especially one as
diverse and large as Tango.

SYSTEM TOOLS
Tango system tools consist of two

applications – Jive for navigating and testing
devices and Astor for managing a Tango
control system. These tools are used by all
institutes and need to be constantly improved
to take into account feedback from users.
Here is a list of improvements currently
requested:

TFR 15: display device dependencies

Individual device servers sometimes need
tuning in function of their hardware and the

client load. Today metrics are available only
for the database server. This should be
extended to all devices:

TFR 16: provide metrics for all devices,
monitoring and plotting tools

TFR 17: ease deployment of large groups of
device servers

STANDARD INTERFACES
The definition of Standard Interfaces for

families of devices is essential to achieve
hardware decoupling and encourage client
application sharing. Tango defines Standard
Interfaces with the help of Abstract classes.
The current list will be extended in the future
to cover a complete catalogue of common
hardware:

TFR 18: extend the Tango Standard
Interfaces catalogue to cover all common
hardware

INTEGRATED WORKBENCH
Today's Tango applications do not share

more than a common library. The system
tools and end-user applications run
independently without sharing windows or
information. A new paradigm has appeared
recently in industry based on an integrated
workbench paradigm. Examples of this are
the Eclipse and Netbeans platforms. Tango
foresees tying multiple applications together
into a single integrated Tango workbench.
This will not only make Tango easier for users
but also encourage sharing applications
between institutes and even between control
systems. A similar effort has been started in
the EPICS community called Control System
Studio (CSS). All efforts will be made to
collaborate with the CSS group.

TFR 19: develop an integrated workbench
for system and end-users of Tango

BEAMLINES
Currently the main application domain of

interest for the Tango community is beamline
control of synchrotron experiments. The aim
is to share applications and eventually a
complete solution for doing beamline control.
The first candidates for sharing are

● HKL library for scanning in reciprocal
space

● device servers for detectors

● fast scanning techniques
● Python, Spectra, SPEC bindings

Eventually entire frameworks can be
shared like Bliss Framework, Device Pool and
Passerelle.

TFR 20: define a common set of beamline
applications to share

PROTOCOLS
Tango was built on top of CORBA. CORBA

provides the network layer. The choice of
CORBA has been key to the success of Tango.
The CORBA IIOP is one of the few high-level
binary protocols for which highly efficient
free open source implementations exist.
Tango uses the omniORB implementation of
CORBA. Despite the success of CORBA,
CORBA has not evolved significantly over the
last few years. The last major extension to
CORBA, the CORBA Component Model
(CCM) was adopted by the OMG in 2001 but
has not been widely implemented. CORBA
has failed to offer a solution for integrating
web protocols and firewalls. This contrasts
with the protocol landscape today where a
new set of HTTP based protocols dominate.

We see Tango being extended in the future
to support multiple protocols. The Tango Java
libraries are already being extended to
support the SOLEIL http web protocol. This
allows transparent access across firewalls. In
the future Tango will investigate adding
support for Web Services and multi-cast
protocols.

TFR 21: support the use of multiple
protocols in Tango

Tango can be seen as a wrapper technology
for implementing components. Tango has
successfully implemented a component model
similar to what the OMG set out to do with
the CCM but did not achieve.

COMMON TECHNOLOGY
Common technology refers to the

technology of common interest to the
participating institutes.

Parallel Computing
FPGAs could be used on a routine basis for

controls and online data analysis. They could
be made available as a Tango service.

Libera
The Instrumentation Technology Libera

devices are widely used at most institutes for
beam diagnostics. There is a common device
server and know-how is shared via a
dedicated interest group.

FUTURE TRENDS
Tango is open to future trends in

technology. Because of its flexibility it is easy
to extend to add system wide support for new
technologies. The aim of the Tango
community is to integrate new technologies
in a coherent manner. Some of the
technologies which are currently under
consideration are:

GIS
Map devices to a standard Geographical

Information System to display their position
and relate that to other information in the
control system, and to connect this to open
source GIS tools like GRASS.

Browser applications
Ajax, Google and others are opening the

way to rich clients implemented in browsers.

Ubiquitous Computing
Ubiquitous computing refers to computer

everywhere. Refer to the paper “Ubiquitous
Tango” at this conference to find out how
Tango could be deployed everywhere.

CONCLUSION
The Tango control system has adopted the

philosophy of “constant improvement”.
This is reflected in the steady stream of new
features which have been added to Tango
since its creation. The Tango community
keeps on finding new areas of common
interest for collaboration. We see Tango as a
wrapper technology par excellence for
accessing and controlling hardware and any
kind of software. The challenge for the Tango
community is to share applications in
domains like beamlines, accelerator physics,
data analysis.

REFERENCES
[1] TANGO home page: www.tango-

controls.org

http://www.tango-controls.org/
http://www.tango-controls.org/
http://www.tango-controls.org/
http://www.tango-controls.org/
http://www.tango-controls.org/
http://www.tango-controls.org/

