
“JDDD”: A JAVA DOOCS DATA DISPLAY FOR THE XFEL

E.Sombrowski, A. Petrosyan, K. Rehlich, P. Tege, DESY, Hamburg, Germany

Abstract
The X-ray Free-Electron Laser (XFEL) [1] is a new

accelerator currently under construction at DESY. It will
be a powerful X-ray source for many scientific disciplines
ranging from physics, chemistry and biology to material
sciences, geophysics and medical diagnostics. The
commissioning is planned in 2014 and the preparation of
the control system has been started. The XFEL makes
high demands on the control system and its user interface.
For this reason “jddd”, a new Java Data Display program
for the Distributed Object Oriented Control System
(DOOCS) [2], has been developed. jddd is a graphical
editor for designing and running control panels. The
editors functionality is similar to standard IDEs like
NetBeans or Eclipse. Complex control panels can easily
be created without programming. jddd offers all
components needed for control panel design. The
Components are reusable Java Beans like labels, buttons,
plots and complex dynamic components as Switches. The
jddd panel structure is stored in an xml format. jddd will
be a replacement of the DOOCS data display (ddd) [3]
program. For compatibility reasons the old ddd storage
format can be converted to the new jddd xml format.

MOTIVATION
A pilot facility for the future XFEL is the Free electron

LASer Hamburg (FLASH) [4], which is in operation
since 1999. It is a user facility providing laser-like
radiation in the VUV and soft X-ray range to various user
experiments. FLASH is operated with DOOCS and here
ddd is used as a graphical editor and synoptic display
program. With the ddd editor graphical displays can easily
be designed without any progamming. This concept has
proved to be a good choice. More than 1300 control
panels have been designed by FLASH operators and
experts until today.

From the experience gained by using ddd in the past 10
years many requests for a new graphical user interface
emerged, like:

• Platform independency
• A modern, more standard-like graphical editor with a

Component Inspector, Undo & Redo functionality,
etc.

• Improved components (e.g. plots with mathematical
functionality for simple data analysis)

• New components (e.g. a new Switch component)
• Layers
• A web interface
• The possibility to reuse jddd panels in other high

level applications.

IMPLEMENTATION
Because of the platform independency it was decided to
use Java with standard Swing components. For all
reusable components like labels, buttons, etc. the Java

Beans technology was used. The existing JDOOCS API
[5] was reworked to match the requirements for the
connection to the DOOCS control system.

For writing the editor, there are several existing
frameworks which can be used as a base. An obvious way
would be to use Eclipse or Netbeans and to write
additional plugins. Another option would be the Netbeans
visual library, which can also be used as an editor API.
But after several tests and discussions the decision was
made that jddd has to be independent of any external
libraries and needs a completely new editor. This
guarantees the highest flexibility for writing special
components which need extraordinary editor features.

THE JDDD EDITOR
The editor was designed similar to other existing

standard graphical editors. It constists of four
subwindows (see Fig. 1), which will be described in the
following sections.

Editor Window
The central point of view is the Editor Window. It

contains a design-time view of a control panel in an editor
tab. Selected components can be arranged, aligned,
flipped, rotated or grouped. A grid can also be used for
alignment.

Component Inspector
On the left hand side is the Component Inspector,

which displays a tree hierarchy of all components
contained in the currently openend tab. It offers a clearly
arranged view on the used components. This view is
important, because complex hierarchical elements like
nested “If” components or transparent buttons are difficult
to see in the Editor Window.

Component Palette
On the upper right is the Component Palette. It contains

a list of all available components that can be used for
control panel design. There are five different component
types:

• Pane components which help structuring the control
panels (i.e. tabbed panes).

• Static components like labels, icons and other
graphical components.

• Dynamic components which are used for the control
and visualization of control system values (i.e.
buttons, values, checkboxes, sliders...).

• Logic components whose appearance depends on a
user defined control system value (i.e. the “If” and
the “Switch” component).

• Plot components which display one or multiple data
channels.

Component Properties
On the lower right is the Component Properties table. It

displays the editable settings for the currently selected
component(s). The property values are typed directly in
the value field. Alternatively the buttons on the right hand
side open special dialog boxes for different property
types. Special editors are a text editor, a bounds editor, a
color chooser, a font chooser, a DOOCS address chooser
and a file open dialog.

THE RUNTIME MODE
The jddd program has two different execution modes.

The first one is the jddd editor mode for drawing and
testing panels. The created panels are saved in a xml file
format. The second one is a run-time mode, where these
xml files are parsed and executed.

In run-time mode the data displayed on the panels
update with a rate which is set for each component in the
editor. Further information like archived data are accessed
by mouse click from the status displays.

The displays can be organized in a hierarchical manner.
Then buttons are defined to open new panels which
provide more detailed information on certain subsystems.

A drag & drop functionality enables the operator to
drop additional data into a plot and e.g. to compare
spectra at runtime. The plot component also offers simple
data analysis functionality like fitting or fourier analysis
of online spectra (see Fig. 2).

For documentation the displays can be printed directly
or else a screenshot can be saved in png file format.

STARTING JDDD
For starting jddd the Java Web Start technology is used.

The jddd jar archives are stored on a central web server
and can be accessed from all around the world at:
http://jddd.desy.de

Java Web Start ensures the most current version of the
application will be deployed, as well as the correct
version of the Java Runtime Environment.

Figure 2: The plot component with a linear fit.

Figure 1: jddd editor screenshot.

http://jddd.desy.de/

SPECIAL EDITOR FEATURES
With the assistance of the jddd editor synoptical

displays are designed in a short time without any
programming effort or knowledge.

All displays may be used as generic library components
and may be added to other jddd displays. For example if
there is a panel displaying a steerer, multiple instances of
this steerers can be included in a panel displaying the
beam pipe (see Fig. 3). Then each steerer gets its
individual device address.

Library components help to create control panels in an
efficient way, because similar components which differ
only in the device address have to be created only once
and can be reused afterwards. In addition changing the
original component changes all its clones. This saves a lot
of work, because instead of editing every single
component, only the “template” has to be modified.

For some high level displays the jddd editor comes -
despite of its logic components - to its limit. The
development of such high level applications is simplified
with different export possibilities of jddd displays (see
Fig. 4):

The first one is to save a jddd display as a Java JFrame
or JPanel. This way complex displays are easiliy designed
with the jddd editor and complex functionality can be
added to the Java source code. The only disadvantage of
this method is that panels cannot be revised with the jddd
editor after external modification of the Java code.

The second way is therefore more flexible: jddd
displays may be reused as Java Beans in other
applications. Only a few lines of codes are needed to add
a jddd display to an existing Java application. The
properties of all components in this jddd display can
easily be accessed from the application. This way the jddd
xml files can be modified any time without affecting the
applications source code.

CONCLUSION
Java with Swing components has proved to be a good

choice for graphical control panel design. The “selfmade”
jddd editor offers the required flexibility and has a good
performance even with huge displays, which contain
more then 1000 components. It is easy and intuitive to use
without reading a manual. Up to now jddd has already 25
different components including complex dynamic and
logical components. The functionality of these
components exceeds the functionality of the old ddd
components and enables the user to create more complex
control system panels. With jddd in a first step the old ddd
displays will be converted then in a second step a new
generation of control displays will be designed.

The next milestone in jddd development will be a
central place for data storage. This central place is
planned to be a subversioning sytem. It has the advantage
that older versions of a panel are not simply replaced by a
newer verison and the design history of the displays
doesn't get lost.

REFERENCES
[1] http://xfel.desy.de
[2] http://doocs.desy.de
[3] K.Rehlich, “An Object-Oriented Data Display for the

TESLA Test Facility”, ICALEPCS’97, Beijing, June
1997.

[4] http://flash.desy.de
[5] K. Rehlich and V. Kocharyan, “JDOOCS – a Java

Library for DOOCS”, PCaPAC’02, Frascati, October
2002.

Figure 3: Example for a steerer library component.

steerer

Figure 4: jddd save and export possibilities.

http://flash.desy.de/
http://doocs.desy.de/
http://xfel.desy.de/

	“jddd”: A Java DOOCS Data Display for the XFEL
	MOTIVATION
	ImPLEMENTATION
	THE jddd editor
	Editor Window
	Component Palette
	Component Properties

	The Runtime mode
	Starting jddd
	special Editor Features
	CONCLUSION
	References

