
1

Title page - CLEO Baltimore, May 9, 2007

* This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

2007 International Conference on Accelerators and Large Experimental Physics Control Systems, Knoxville, TN,
October 14, 2007
Lawrence Livermore National Laboratory, USA

Software Engineering Processes
Used to Develop the NIF Integrated
Computer Control System*
A. Peter Ludwigsen

2

NIF is a stadium-sized facility that will contain
• 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system
• 10-meter diameter target chamber with room for nearly 100 diagnostics

3

National Ignition Facility

“Quads” (4 beams) and “Bundles”
(8 beams) are the basic building
blocks of the NIF

4

NIF’s 192 energetic laser beams will compress small deuterium-tritium
fusion targets to conditions where they will ignite and burn, and achieve
energy gain

5

The Integrated Computer Control System (ICCS)
robustly operates a complex physics facility

• Control 60,000 points
1,500 processes
850 computers
140,000 distributed
objects

• Align and fire 192 lasers
< 50 microns on target
< 30 psec timing

• Automatic shot controls
< 4-hours shot-to-shot
Hands-off operation

• Assure
Situational awareness
Machine protection

• Control 60,000 points
1,500 processes
850 computers
140,000 distributed
objects

• Align and fire 192 lasers
< 50 microns on target
< 30 psec timing

• Automatic shot controls
< 4-hours shot-to-shot
Hands-off operation

• Assure
Situational awareness
Machine protection

Automatic control of 192-beam shots
are overseen by 14 operator stations
Automatic control of 192-beam shots
are overseen by 14 operator stations

6

ArchiveVerify

S
h
o
tShot Preparation

Amplifier cooling S
h
o
t

Fire pre-
amplifier

Archive

30-m

Automated Shot Cycle

• Acquire campaign shot goals from laser physics model

• Perform automatic alignment and wavefront correction

• Configure diagnostics and laser performance settings

• Conduct countdown (software:4-min and timing:2-sec)

• Assess shot outcome and archive shot data

20-m

Fire main
amplifiers

2-s

4 hours

S
h
o
t

ICCS is required to automatically align, fire and
diagnose laser shots every 4 hours

7

Key Challenges Solutions

Scale from single bundle to full NIF Partitioned into 24 independent bundles

Align 192 beams on target in 30
minutes

Robust parallel image processing of
machine vision sensors

Fire laser shots in 4-hour cycles Shots automated with model-based
control software

Assure machine protection Incorporated shot verification and
situational awareness features

Provide flexible controls capable of
supporting NIF for decades

Created versatile plug-in software
framework using CORBA distribution

Summary of Key Technical Challenges

8

• Software engineering
— Open distributed architecture based on industry tools

— Formalized design process

— Configuration Management

— Product Integration

— Formal Verification Testing

• Computer science

— Application frameworks developed in-house

— Standardized coding techniques

— Extensive peer reviews

Goal: Build team with the necessary experience and engineering rigor

Software engineering and computer science were
key to building NIF’s large-scale control system

9

A segmented and layered architecture was
implemented to decompose the control system

10

ICCS software framework is an object-oriented
toolkit to build large-scale control systems

11

Open software architecture supports multiple
environments and simplifies technology evolution

Category Tool / Environment Usage

Computers /
Operating
System

- Sun (Solaris)
- PowerPC VME (VxWorks)
- X86 (WinXP, LINUX)
- X86 PC104 (WinCE)

- Servers, FEPs w/o hardware
- FEPs with hardware
- Consoles, image processing
- Target diagnostic controllers

Languages

- Java
- Ada
- C
- IDL
- XML

- GUIs, frameworks, commissioning tools
- FEPs, servers and supervisors
- Embedded controllers
- On-line data and image analysis
- Workflow models and scripts

CORBA
Distribution

- JacORB
- ORBexpress

- Java applications (open source)
- Ada applications

Software
Development

- Eclipse
- IBM Rational
- Ada Core Technology
- ILOG
- UML

- Java IDE (open source)
- Solaris, VXworks Ada IDE
- Windows, LINUX Ada IDE
- Graphics builder tools
- Object modeling

Database - Oracle - Data-driven configuration, archives

As technology evolves, CORBA allows ICCS to migrate with itAs technology evolves, CORBA allows ICCS to migrate with it

12

ICCS architecture permits each bundle to be built
and commissioned independently of the others

A partitioned architecture helped ICCS eliminate scaling risks

13

Data-driven architecture adapts quickly in the
field to suit operating conditions

• Flexible and responsive
— Nominal values deployed along with new capabilities
— Data modified as components are commissioned
— Operators update equipment calibration

• Separate database instances map to the environment
Development: Schema and initial data
Integration: Validates data and schema
Formal Test: Final verification
Production: On-line use
Aux. Facilities: Factory and maintenance facility support

Software modeling and data-driven automation behavior supports
flexible point-of-use commissioning and optimization

14

Shot Director Supervisor

15

16

Rigorous quality controls assure delivery of
reliable software to the facility

The QC process resolves software problems early, with more than 90% of
problems found prior to commissioning or shot operations

17

Incremental development strategy delivered
functionality, while also iteratively managing risk

• Target high-level project milestones
— Major release planned every 12 months
— Over 60 minor releases and patches deployed per year

• Release content driven by
— Project goals and identified capabilities
— Defect resolution
— Improvements requested by operation staff
— Framework enhancements
— Perceived risks

• Strict development lifecycle followed
— Managers plan release and collect detailed requirements
— Developers design, code, unit test and integrate
— Separate test team performs offline and online tests

Goal: Support the overall project schedule while maintaining a manageable
release content

18

Software metrics demonstrate the team’s
adaptability to deliver flexible releases

Release
Type

Average
Changes

Deployments
per Year

Average
Development

Time

Average
Integration

Time

Average
Test Time

Major 540

Minor 469 3 12 w 2.5 w 4 w

57

7

1

Several
per Day

1 m 1.5 m1 y

4 w

4 d

NA

Service
Pack 11 1 w 2.5 w

Patch 50 <1 d 2 d

Script &
Database Hundreds NA NA

19

Releases are actively managed by closely
monitoring the change tracking system

Tracking System Database
— Releases contain subsystems that are individually tracked
— Subsystem leads estimate the work in hours
— Change states tracked:

– Assigned, Completed, Desk-checked, Integrated, Released

Active Management
— Planning

– Work assigned to each subsystem is analyzed
– High levels of change requests indicate increased testing
– Unrealistic developer workloads are replanned

— Release
– Progress is tracked on a daily basis
– Trends predict completion dates
– Progress is easily understood
– Release content continues to be adjusted as needed

The tool maintains data on past release performance, which is
used to flag potentially unreasonable expectations

20

Status of Software Change Requests (SCR)
predicts the release completion date

0

100

200

300

400

500

600

700

800

900

11
-D

ec
18

-D
ec

25
-D

ec
1-J

an
8-J

an
15

-Ja
n

22
-Ja

n
29

-Ja
n

5-F
eb

12
-F

eb
19

-F
eb

26
-F

eb
5-M

ar
12

-M
ar

19
-M

ar
26

-M
ar

2-A
pr

9-A
pr

16
-A

pr
23

-A
pr

30
-A

pr
7-M

ay
14

-M
ay

21
-M

ay
28

-M
ay

4-J
un

11
-Ju

n
18

-Ju
n

25
-Ju

n
2-J

ul
9-J

ul
16

-Ju
l

23
-Ju

l
30

-Ju
l

6-A
ug

13
-A

ug
20

-A
ug

27
-A

ug
3-S

ep
10

-S
ep

17
-S

ep
24

-S
ep

1-O
ct

8-O
ct

15
-O

ct
22

-O
ct

29
-O

ct

SC
R

s

Predicted to
Formal Test

Predicted
to NIF

Integration
Start

Assigned
Completed

Desk Checked

Integrated

21

Peer reviews enforce design and coding
standards during the development phase

• Requirements Reviews
— Held with hardware and operations Subject Matter Experts
— Assures developers and testers understand work

• Design Reviews
— Mandatory for new systems, or for complex changes

• Code Reviews
— Desk Checks performed by another developer

– Does code meet requirements?
– Does code implement the design properly?

— Walkthrough Inspections
– Team review of critical code or key interfaces

NIF’s 100% Desk Check policy catches 15% of total defects

Goal: Find defects earlier in the process, preferably before testing
when cost to repair is lowest

22

Efficient developer testing is a combination of unit
testing followed by formal product integration

• Unit Tests confirm code changes
— Informal peer review
— Developed to specific standards and practices
— Automated tests are being developed

• Integration Tests ensure products work together
— Tests interfaces
— Verifies proposed database changes
— Applies various test levels

– Change verification
– Regression checks
– Shot sequences
– Scaling and loading tests

23

Software releases are formally integrated in an
“extreme programming” mode

• Led by the Product Integration Manager

• Integration is started before all coding is completed
— Gets the team into test and fix mode

• Daily integration goals are published
— Lower-level software functions verified first
— Shot sequences evaluated last
— Goals updated based on previous day’s results

• Extreme programming works for NIF
— All developers on call (via pagers)
— Development code base used for integration
— Defects fixed on the spot where possible
— Integration defects carefully prioritized

Goal: Produce a final integrated product with good quality

24

Independent verification demonstrates readiness

• Off-line Release Verification Testing
— Verifies software for delivery to NIF

– Critical software controls are validated
– Issues reviewed with Responsible Individuals
– All testing is documented

— Performed in an environment similar to NIF
– Mimics NIF hardware in a low-cost test environment

— Initial operator training on new features
— Operator checklists revised to conform to the new software

• On-line Deployment Verification
— Verifies software performs correctly with NIF hardware
— Verifies build configuration and production database changes
— Final operator shot training

All software releases (and patches) undergo independent offline testing

25

Offline test bed uses real devices where practical,
along with software emulators for scaling tests

26

Test bed simulators mimic operation of large-
scale NIF Hardware

Target Positioner in NIF

Target Positioner Simulator

27

Code configuration is managed by a dedicated
staff of specialists

• Code base managed across multiple environments
— Support mixed languages, development tools, and platforms
— Several releases are simultaneously active

• Automated tools validate build accuracy
— Automatic regression checker identifies back-revisions
— Automatic platform checker identifies version mismatches across

platform code bases

• Online data/file changes are checked frequently to maintain conformity
— Online data changeable only through a formal permit and

approval process

Software and data configuration management are essential to
produce predictable and traceable releases

28

ICCS Staff Composition, 100

The ICCS team includes diverse skills in
software, controls, QC and laser technology

• Software skills
— Object-oriented
— Database
— User interfaces
— Real-time
— Image processing
— Build management
— Test engineering
— Quality assurance

• Hardware skills
— Motion controls
— Timing systems
— Data acquisition
— Computers &

networks
— Manufacturing

• Software skills
— Object-oriented
— Database
— User interfaces
— Real-time
— Image processing
— Build management
— Test engineering
— Quality assurance

• Hardware skills
— Motion controls
— Timing systems
— Data acquisition
— Computers &

networks
— Manufacturing

Hardware, 21

Database, 5

Test, 13

QA/CM, 3
Managers, 7

Software, 50

• Team averages 20 years in field

• Key experience drawn from other physics
projects and relevant industries such as
aerospace

• Team averages 20 years in field

• Key experience drawn from other physics
projects and relevant industries such as
aerospace

29

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Oct-
97

Feb
-98

Ju
n-9

8
Oct-

98
Feb

-99
Ju

n-9
9

Oct-
99

Feb
-00

Ju
n-0

0
Oct-

00
Feb

-01
Ju

n-0
1

Oct-
01

Feb
-02

Ju
n-0

2
Oct-

02
Feb

-03
Ju

n-0
3

Oct-
03

Feb
-04

Ju
n-0

4
Oct-

04
Feb

-05
Ju

n-0
5

Oct-
05

Feb
-06

Ju
n-0

6
Oct-

06
Feb

-07
Ju

n-0
7

Oct-
07

Feb
-08

Ju
n-0

8
Oct-

08
Feb

-09

Th
ou

sa
nd

 S
ou

rc
e

Li
ne

s
of

 C
od

e

Injection Laser

Main Laser

Manual Shots

Labs

Automation

Scripted Shots

Multi-Bundle

Multi-Cluster

192 Beams

Software development of 1.8 million lines of code
is greater than 85% complete

Target

30

ICCS successfully supported over 400 shots
while the software was under construction

31The control system scales and operates all bundles in parallel

32

The focus now is on automated shots with target-area systems including final
optics, positioners and diagnostics

33

34

Large control systems can be developed on time
with expectation of consistent reliability

NIF continues on track for project completion in 2009, followed by
National Ignition Campaign experiments beginning in 2010

• Architecture
— Segment, partition, layer, and (open) distribution
— Common frameworks, design patterns and code templates

Address constraints and scaling concerns

• Development practices
— Careful planning under authorized change control
— Configuration management of code base and data
— Diverse, experienced, and specialized staff

Resolve risks as well as urgent issues

• Quality controls
— Peer reviews and unit testing
— Intensive product integration
— Independent formal testing

Measure quality to guide corrective actions

35

	Title page - CLEO Baltimore, May 9, 2007
	The Integrated Computer Control System (ICCS) robustly operates a complex physics facility
	ICCS is required to automatically align, fire and diagnose laser shots every 4 hours
	Summary of Key Technical Challenges
	Software engineering and computer science were key to building NIF’s large-scale control system
	A segmented and layered architecture was implemented to decompose the control system
	ICCS software framework is an object-oriented toolkit to build large-scale control systems
	ICCS architecture permits each bundle to be built and commissioned independently of the others
	Data-driven architecture adapts quickly in the field to suit operating conditions
	Incremental development strategy delivered functionality, while also iteratively managing risk
	Software metrics demonstrate the team’s adaptability to deliver flexible releases
	Releases are actively managed by closely monitoring the change tracking system
	Status of Software Change Requests (SCR) predicts the release completion date
	Peer reviews enforce design and coding standards during the development phase
	Efficient developer testing is a combination of unit testing followed by formal product integration
	Software releases are formally integrated in an “extreme programming” mode
	Independent verification demonstrates readiness
	Offline test bed uses real devices where practical, along with software emulators for scaling tests
	Test bed simulators mimic operation of large-scale NIF Hardware
	Code configuration is managed by a dedicated staff of specialists
	The ICCS team includes diverse skills in software, controls, QC and laser technology
	Software development of 1.8 million lines of code is greater than 85% complete
	ICCS successfully supported over 400 shots while the software was under construction
	Large control systems can be developed on time with expectation of consistent reliability

