
Drag and Drop Display and Builder.

Timofei B. Bolshakov,
Andrey D. Petrov

FermiLab



Motivation
 Operations of complicated colliders (Tevatron, the
LHC, and the ILC ) require sophisticated control
systems.
Security
Data pool management
Alarms
Logging

 The people who must build, operate, and maintain
these accelerators
Operators
Engineers
Accelerator physicists
require rapid development of control displays and
application programs.



Motivation

 For rapid development, the system expert (operator,
engineer, or physicist) should be the one to develop
the displays or applications

 These advanced control systems can seem
overwhelming to non controls experts.
This is why Lab View is so popular
However Lab View offers little of the benefits of an
advanced control system.



Solution

 Drag and Drop is an environment that gives non-
control system experts the ability to quickly
build controls displays which operate within a
context of the control system.

 Drag and Drop:
is easy to use
sophisticated enough to handle complex displays
uses web browsers and/or Java WebStart
is easily extendible
is a mature application

• First developed in 2001
• Fermilab Cryogenics department are heavy users



Drag and Drop Display and Builder

 Drag and Drop a consists of two parts:
Display
Builder

 The Drag and Drop Display can be run from a web
browser (readings only) so it can viewed anywhere in the world.
Files are stored on a web server (well organized and secure)
Displays are extremely quick because it uses Scalable Vector
Graphics (SVG) so that the screen does not constantly have to
be re-drawn.

 The Builder has a simple graphical user interface that
offers a rich set of graphical components
Display can be built and deployed in a matter of minutes
The builder is easily extendible
can be run on any machine because it is based on Java



Demo – Empty Builder



Demo – Builder, Open Project



Demo – Builder,
Meson Compressor Room



Demo – Display,
Meson Compressor Room



Demo – Klystron Step 1,
Empty Builder



Demo – Klystron, Step 2,
Project Properties



Demo – Klystron, Step 3,
Adding a Device



Demo – Klystron, Step 4,
Setting Up Device



Demo – Klystron, Step 5,
Adding Indicator



Demo – Klystron, Step 6,
Adding Graphics



Demo – Klystron, Step 7,
Adding Graphics



Demo - Klystron, Step 8,
More Components



Demo – Klystron, Step 9,
More Devices



Demo – Klystron, Step 10,
Setting Up Device



Demo – Klystron, Step 11,
Connecting



Demo – Klystron, Step 12,
Saving Project



Demo – Klystron, Step 13,
Saving Project 2



Demo – Klystron, Step 14,
Projects Repository



Demo – Klystron, Step 15,
Display



Architecture: Components-based.
 Software component is a system element offering a
predefined service and able to communicate with
other components.

 They do not share state and communicate by
exchanging messages carrying data.

 Criteria:
 Multiple-use
 Non-context-specific
 Composable with other components
 Encapsulated i.e., non-investigable through its interfaces
 A unit of independent deployment and versioning



Architecture: Components-based.
A simpler definition can be: A component is an object
written to a specification.



Philosophy: Components libraries.
Each component has only one function (e.g., simple and
specialized).

Either visualization or data acquisition.

TimedData travels via connecting pipes.

Similar components are grouped into libraries:

Controls system interface (ACNET) : reading and writing
data from hardware.

Visualization – formatted number, barrels with liquid level,
plots, histograms, oscilloscopes, etc.

Data entry – input field and slider.

Static components – arcs, bars, specialized cryogenic
symbols etc.

Processing pipes – components that process data and send it
to visualization components.



Architecture



Architecture
Project Builder

is a special-purpose graphical editor that allows users to
define logical flows of information from data sources to data
consumers through data handlers and pipes.

Repositories of Components and Projects

Runtime Project Engine

downloads project XML files from the repository and starts
project as Java application.

WebTier and Project Viewer

Upon the first user request, WebTier sends the full SVG
image to the client. On all subsequent requests, WebTier
sends just a difference between current image and the
previous one.



Why redesign ?
Any Java application written in 2001 should be refactored to
accommodate new language features and new standard
libraries.

LAFS (LHC At Fermilab Software) group was formed in
Fermilab in Autumn 2006.

LAFS Goal - share experience & software with CERN and
learn from new CERN control system.

Drag and Drop web tier was separated into independent
project and implemented.

Requirements for new version of Drag and Drop Display
and Builder are discussed right now.



Changes in Architecture



WFD - Web Fixed Displays.

The web-tier was refactored and called Web Fixed Display
(WFD).

CERN developers reviewed and modified Requirements and
controlled quality of the implementation.

New features:

WFD shows ANY Java Swing- or AWT-based application on the
web and works with multiple frames.

WFD allows every application to have a separate classpath.

WFD has a live index page.

Application is described in a property file.



http://www-bd.fnal.gov/wfd



WFD – How does it work.
WFD has 2 major parts – server side Java web application
and client side AJAX Javacript.

Server side ApplicationManager (AM) starts preconfigured
applications and produces Scalable VectorGraphics (SVG)
images of these applications by periodical rendering them on
special SVGGraphics2D.

SVG is a convenient graphical format – it is an XMLW3C
standard. Text in SVG:
<text class="cls33" id="849" x="2" y="14">

ACN2: 0.7 PPM

</text>

<path class="cls11" id="863"

d="M879 114 L854 94 L854 114 L879 94 zM879 114 "/>



WFD – How does it work.
Client side AJAX script downloads SVG image of
application once.

After that it starts to request the differences from the server.
Difference comes in following format:

<changes id=”849” content=”ACN2: 0.6 PPM”/>

<changes id=”863” attr=”d”

content=”M879 114 L854 94 L854 114 L879 94 L880 102 z“/>

And AJAX script changes SVG elements on client side using
DOM API.

As you may see it is very economical way of updating live
graphical web page! With just hundreds bytes per second you
got rich updating picture!



Acknowledgments

ToDavid McGinnes

for managing LAFS workgroup and

encouraging DnD redesign.

To Jakub Wozniak

for working from CERN side on WFD.



Thank you for your attention.


