
EXPERIENCES: CONFIGURATION MANAGEMENT
WITH A GENERIC RDB DATA-MODEL

T. Birke, B. Kuner, B. Franksen BESSY, Germany

Abstract
A new RDB data-model has been introduced at BESSY

to enable a more generic approach to store and handle
configuration data. Stored data ranges from global
hardware-structure and -information through building
logical hierarchies to configuration information for
monitoring applications as well as signal-level
information. This information is used to configure the
front-end computers as well as the generic and higher
level tools like alarm-handler and archiver.

New applications at BESSY are developed with this
generic RDB data-model in mind. First experiences with
real-life applications as well as a set of tools for entering,
maintenance and retrieval of configuration data are
described in this paper.

MOTIVATION
In 1995, when the software- and configuration-

foundation was laid at BESSY-II, the decisions made also
included a commercial professional grade relational
database system (RDB) to hold all configuration data.

The basic approach was to map a specific RDB data-
model to each application, while applications were
usually separated by device-class (power supplies,
vacuum, RF, interlock systems…).

The RDB evolved over the years and now consists of
about 250 tables and 150 views storing and providing
configuration data in about 20 more or less different data-
models. Maintenance of data-structures and -contents
took more and more time. Evolving thus changing
requirements of applications could not always be weaved
into the existing data-models and so lead to patches that
again raised maintenance load.

A new RDB was developed with a flexible and generic
data-model in mind to get around these limitations and
high maintenance load.

A NEW RDB DATA-MODEL
The new RDB data-model basically consists of three

tables:
 gadgets

Entities with nothing but a name
 relations

named parent-child relationships between gadgets
 attributes

name/value pairs associated with a gadget
Using these three tables, any set of directed acyclic

graphs of configuration information may be represented.
While gadgets represent the nodes in the graph, relations
correspond to the edges and those two represent the
structural information of the stored configuration data.
The attributes finally hold the configuration parameters
and data. Gadgets may have any number of relations to
other gadgets as long they can be uniquely identified.

Also any number of attributes may be associated to a
gadget. Additionally relations also carry a name (which is
in turn a gadget) resembling some kind of relation-type.

Since the graphs stored in the data-model (gadgets-
database) may be of arbitrary depth, recursion or nested
loops are necessary to retrieve all connected information.
The chosen commercial RDB-system ORACLE has an
extension to the SQL-standard called hierarchical queries
(SELECT … CONNECT BY … START WITH …). This
makes it possible to retrieve any number of nested
parent/child relationships with just one query.

The actual implementation of the three core-tables
contains a few more columns. For further details and
examples, please see [1] and [2].

APPLICATION PROGRAM INTERFACE
Since accessing the tables directly is not only difficult

for simple applications, but also dangerous, since the
structural information may easily be destroyed, an
application program interface (API) is provided to
encapsulate basic operations and hide the implementation
details. This API is written in PL/SQL.

Bindings to Programming Languages
On top of that API there are several bindings to

commonly used programming languages. Currently
supported are Java, Perl, Python, Tcl and Haskell.

Java
The Java-binding was the first binding to access the

gadgets-database from an application point of view. It was
basically developed as an access-layer for the
GadgetBrowser (see below) and uses JDBC to access the
PL/SQL-API.

Perl
The perl-binding is heavily used in a set of command-

line-tools (see below) that were developed while building
the first application to use the gadgets-database and is
based on perl DBI. One main feature of these tools is the
possibility to dump the information stored in the gadgets-
database to ASCII-files and read these back in again. This
was especially helpful during development of both RDB
gadgets-database and PL/SQL-API. The ASCII-dumps
are, since they are located with the source-code of an
application, also kept in a revision control system. This at
least opens a possibility to completely switch an
application back to a previous version – source-code as
well as configuration data.

Python
The Python-binding uses adodb to access ORACLE

and is only used in some test-programs for now.
Nevertheless, this is likely to change, since some few
scripts creating configuration files are already written in

Python. The configuration data in this application is
already stored in hierarchical python dictionaries that
easily map to the gadgets-database.

Haskell
The Haskell-binding opens a whole new and elegant

way of programming using the data-store in a functional
instead of a procedural way.

APPLICATIONS AND TOOLS

GadgetBrowser
The Java application GadgetBrowser is a first approach

to have a universal browser and editor for maintenance of
information stored in the gadgets-database. It offers
access to all basic operations like creating, modifying or
deleting gadgets, and relations and is a simple graphical
browser to retrieve the stored information.

Figure 1: GadgetBrowser main screen

Figure 2: GadgetBrowser edit menus

Figure 3: GadgetBrowser attribute editor

Perl toolset
A very powerful set of command line tools has been

developed using the perl programming language. One
basic element of information-representation for these
tools is a path to a gadget. This path represents the
parent/child relations on a specific path between two
gadgets. A path can indeed be compared to a directory
structure on a file-system. So if the gadgets-database
contains data as shown in table 1

/EPICSTOPS/BIIControls/VacuumApp/IOCS10C/GPN5VS8R

represents a valid path to a device in the example shown
in Fig. 1, while

IOCS10C/[containsDevice]/GPN5VS8R

represents a specific relation.

parent child relation_type
EPICSTOPS BIIControls
BIIControls VacuumApp
VacuumApp IOCS10G

IOCS10G GPN5VS8R containsDevice
Table 1: sample contents of gadgets-database

The core-module in this perl-toolset takes descriptions
based on this path-syntax and performs queries or inserts
on the gadgets-database. It also logs all actions and thus is
able to undo all operations and put the gadgets-database
back into its former state.

Other scripts in this toolset use the core-functions to
retrieve information and – based on conventions – is e.g.
able to create runtime DB configuration files containing
record-descriptions to run on an IOC (I/O-Controller)
running EPICS (Experimental Physics and Industrial
Control System).

FIRST STEPS
The first application to use the new RDB Gadgets-

database was the Vacuum System Application for the
BESSY-II Storage-Ring. Major extensions and changes
had to be applied to this Application, so it was chosen to
be the first real-world application to move to the gadgets-
database.

Most applications for controls-configuration at BESSY
use a common approach: Template configuration files are

created from different sources and model the common
structure to control e.g. a vacuum valve or a getter pump.
These templates contain lots of placeholders where
instance-specific information will go (e.g. I/O-address,
device-name …). On instantiation, this information is
retrieved from the ORACLE database and filled into the
template resulting in a complete configuration file.
Although this reasonable approach has proven successful,
one of the shortcomings was the fact, that information
was distributed over heterogeneous places. Some
Information was retrieved from the ORACLE database,
other information was stored in flat files and some
information may even be generated by scripts during
build-time (see Fig. 4).

Generated Data

Flat Data/Template Files

Build-time Script

RDB
Any Configuration File

Figure 4: “old” configuration system – still in use

One of the motivations for the new RDB data-model was
the ambitious intention to store all information in the
RDB and put the “intelligent” part of the process in
scripts. So basically the information that used to be stored
in the RDB had to be restructured to fit into the gadgets-
database and the information, that was held in flat files,
for the first time had to go into the RDB. This was indeed
an instructive process and many improvements were
made to the gadgets-database at this time.

Build-time Script

Gadgets database Any Configuration File

Figure 5: “new” configuration system

The next application to follow was the trigger-delay
application handling all timings/delays at BESSY.
Currently in preparation-phase to move to the gadgets-
database are the insertion-device- and the power-supply-
application at the MLS storage ring (see [3]).

All new applications developed at BESSY and for MLS
are planned to store their configuration information in the
gadgets-database.

A STABLE BASIS
The result of two years of part-time development is a

more and more stable basis and the increased experience
on how to make use of a highly generic RDB data-model.

The idea of storing any kind of structured information
in a generic RDB data model together with proper
retrieval and maintenance tools is a powerful foundation,
giving full control over the structure of data and the data
itself to the developer without any interaction of an RDB-
administrator. While in the “old” configuration system
(Fig. 4) intelligence was spread amongst RDB, flat files
and build-time scripts together with the necessary
information, the “new” configuration system strictly
separates information from intelligence (what to do
with/how to interpret this information). All information is
in the RDB data-model and all intelligence is located in
the programs and scripts that actually create the needed
configuration files.

CONCLUSION
Although re-designing an existing – and for most parts

even properly working – system is always a time-
consuming and sometimes even painful process. The new
system has as well to cover all useful and positive
elements of the old system while also fill the gaps and
shortcomings the old system never covered well.

This is not always possible and sometimes even well
settled and known procedures have to be modified and
even seem more complicated at first glance.

In any case – this filling the gaps is the main driving
force to do the whole switch, and the result will be a
configuration management system that is
● Easier to maintain – and thus will reduce workload
● Highly generic – and thus will be easier to adapt to

requirement changes
● All from one source – and thus holds all relevant

information in one place

REFERENCES
[1] T. Birke, B. Franksen, B. Kuner, R. Lange, P. Laux,,

R. Müller, G. Pfeiffer, J. Rahn “Beyond Devices: An
Improved RDB Data-Model for Configuration
Management”, ICALEPCS’05, Geneva, October
2005, PO1.078-7

[2] T. Birke, B. Franksen, B. Kuner, R. Lange, P. Laux,,
R. Müller, G. Pfeiffer, J. Rahn “Use Case:
Configuration Management with a Generic RDB
Data-Model for”, ICALEPCS’05, Geneva, October
2005, PO1.079-7

[3] R. Lange, T. Birke, R. Daum, S. Ehlert, D. Faulbaum,
B. Franksen, R. Hartmann, B. Kuner, P. Laux, R.
Müller, I. Müller, J. Rahn, H. Rüdiger, D. Thorn
„Status of the MLS Control System“, ICALEPCS’07,
Oak Ridge, TN, October 2007, TPPB37

