
Experiences: Configuration Management

with a Generic RDB Data-Model

Thomas Birke, Bernhard Kuner, Benjamin Franksen

make, 

perl, tcl, 

python, 

...

any static or 

generated data-fileflat

DB files

substitution 

files

template 

files

loadable 

DB-file

RDB

Example

Generation of 

EPICS IOC Runtime-Database

(Frontend Computer Configuration)

Old Configuration System

Configuration Database

~250 Tables 

+ ~150 Views

in ~20 connected 

Data-Models

Device-Class oriented point of view

• per-device-class application and RDB data-model

• Applications use a subset of a pool of possible data-sources

• Almost any combination of the available sources is used

• Every Application is different → higher maintenance load

• Huge RDB (amount of Tables) due to requirement-changes to
applications → patches to data-model were added

• No unified source of information for higher-level applications
like Archiver, AlarmHandler, Save/Restore…

Current Status
using perl tools

template 

files

perl

Gadgets Database
CreateDB.pl

EPICS

loadable 

DB-file

substitution 

files
All data from one source

• Intelligence in perl modules and script

• Uses EPICS-mechanism/tool to create actual DB-file
• new targets (e.g. AlarmHandler-config) just require extension of perl-modules
• Gadgets-DB is also populated by perl modules and scripts
• Templates as well as Substitution-files may still be developed separately,
imported into Gadgets-DB, and then used to create configuration files

Transition when moving 

to new Data-Model

Desired State
currently Tested using Haskell and perl

Haskell

perl

Gadgets Database
CreateDB

loadable 

DB-file

Example calls:
CreateDB.pl Vacuum.IOCS14G.substitution

CreateDB.pl vacuum_ITR90.template

Example calls:
CreateDB BII-Controls Vacuum IOCS14G

CreateDB BII-Controls IOCS14G

Single-Step creation of configuration-files

• Process of creating configuration-files as simple as possible
• Extrapolated current status
• Same procedure to be implemented for any kind of
configuration-file

Haskell

Object of study and not (yet) project-relevant.

Haskell – as a functional programming language – requires to 

re-think the mental model of programming, but opens a path 

to very elegant solutions

Graphical Tool – GadgetBrowser

Java-based Tool for maintenance of data 

stored in Generic RDB data model 

(GadgetsDB)

• Browse through hierarchies
• Add/modify/delete 
gadgets/relations and attributes

Ongoing Studies and 

Development


