
DISTRIBUTED TIMING DIAGNOSTIC APPLICATIONS

Paul Kennerley, Ioan Kozsar, Julian Lewis, Javier Serrano

 CERN, Geneva, Switzerland

Abstract
The CERN timing system delivers events to the

accelerator complex via a distribution network to receiver
modules located around the laboratory. These modules
generate pulses for nearby equipment and interrupts for
the local host. Despite careful planning, hardware failure
and human error can lead to anomalies within the control
system. Diagnosing such errors requires a formal
description of the logical and topological timing layout.
This paper describes the design and implementation of a
suite of timing diagnostic software applications which
allow users to quickly diagnose and remedy faults within
the CERN timing system.

TIMING SYSTEM OVERVIEW
At the heart of the timing system is the Central Beam

and Cycle Manager [1] CBCM which may be considered
as a scheduler for the CERN accelerator network. The
CBCM distributes timing events over a network of cables
to timing receiver cards located near end user equipment.
On start up, each card is configured with control values
which specify actions that should be performed for each
accelerator cycle and which events trigger them.
Examples of control values are the counter delay, start,
clock, mode, output channel, output enable state etc. A
counter output may in turn be used to start other counters
forming multiple chains of dependencies before finally
triggering end user equipment. These counter chains
depend on the physical cabling, on static and dynamic
configuration data and on the machine cycles being
executed. An example of equipment that relies on such a
chain is an extraction kicker. For a given accelerator cycle
with the beam destination the kicker sends the beam to,
the kicker must pulse, but in other cycles with a different
destination it does not. In this example, a counter might
be loaded and started by a CBCM extraction timing event.
Its output may be used to start timing chains in the
extraction process of an accelerator and elsewhere. The
next counter in the kicker extraction chain may be
programmed to count revolution frequency ticks. Its
output may in turn start a third counter counting RF ticks,
before finally pulsing the extraction kicker. This is typical
of the situation found in extraction and injection timing
systems.

DIAGNOSING FAULTS
When a fault prevents a timing pulse from being

received or causes it to be received at an incorrect time,
then diagnosing the fault from the accelerator behaviour
is very difficult. Common causes of faults may include;

defective cabling, timing receiver hardware failures,
incorrect control values, among others. If the machine
operators suspect a timing fault they must follow
potentially faulty chains in the suspect areas of the
controls system verifying each counter. Hence diagnosing
a suspected fault requires locating the area within the
timing network in which the fault is suspected, running
SQL queries against the controls database to discover the
physical location of each timing cable and which timing
cards are involved in producing the pulse. It is then a
matter checking control values for each timing card
against the controls database and checking each timing
receiver hardware status. Once a fault is detected the
implied timing cables and modules can be checked
physically.

DIAGNOSTIC SOFTWARE
To reduce the time and effort required for diagnosing

faults, a suite of Timing diagnostic applications has been
developed. Inspired by the Google Earth application, the
first component of the Timing Diagnostic suite is a Java
based desktop application which allows users to browse
the map of counters by name, channel, timing card, front
end computer or by accelerator. It also allows users to
select the complete network of timing counters on which
a given counter depends.

Figure 1: Mapping Tool

The map displays the physical location of the timing

cards on which the counters are located, along with the
identification numbers of the connecting cables.

This information allows users to quickly identify the
‘route’ of dependencies on which an event depends. Once
the route has been established, it is possible to determine

which and in what order the timing cables and timing
receiver cards should be checked for malfunction.

OBTAINING CONTROL VALUES
Although the mapping software displays the hardware

route over which timing signals may pass, it does not
show the current control values contained within the
timing receiver cards.

The second component in the diagnostic suite is a web
application that allows the user to make specific counter
selections. The selection interface (shown above) allows
timings to be selected from a pool that can be filtered by
machine, building, front end computer or regular
expression. Changes to the filtering criteria results in an
update of the list of selectable timings shown within the
selection pool.

The following gives an overview of the type of
information that can be retrieved and how it assists in
diagnosing faults within the timing system:

• Status information for timing receivers is displayed

for past bus errors, phase lock loop errors, General
Machine Timing reception errors or self test failed.
The timing reception enable/disable state for the card
is also displayed. A history of previous errors is
available which includes the type of error, how many
times it occurred and the time at which it was last
detected.

• Control values are obtained for each accelerator cycle
and the static parts are compared with configuration
data in the controls database. Any discrepancies are
highlighted. Dynamic settings such as the current
delay and the output enable status are not stored in
the database and can not be compared.

• Acquisition values are read for every cycle over the
last complete super cycle and include information
such the central timing event that loaded the counter,
the clock used, and the UTC and cycle times at which
the timing counter made an output.

• The version for the host timing library, device driver
and each modules VHDL code version.

The web based application also contains online help and a
link through which users can download the Timing
Diagnostic Mapping application via Java Web Start [6].

DESIGN, ARCHITECTURE &
TECHNOLOGY

Mapping Application
The mapping application has been implemented using

Java and the embedded version of the open source Derby
database which contains the static control values and the
logical relationships for each timing counter.

Timing counters may have multiple inputs and multiple
outputs. The logical timing map can therefore be
considered as a directed graph data structure. Given that
there are currently more than 5000 timing counters within
the timing system, creating a rule based system for
rendering such a data structure would be extremely
complex and time consuming. Therefore the task has been
simplified. For each child timing counter that has multiple
parents, the child timing counter (and its subsequent sub
tree) is displayed multiple times, i.e. once for each parent.
In effect, this reduces the directed graph into a collection
of tree data structures. This greatly reduces the
complexity of rendering the data structure as a logical
map and is a common technique that is often used to
simplify complex electrical diagrams.

The following outlines the algorithm for generating the
tree data structures. First, a list of all selected timings is
obtained. Two lists are then associated with each timing
counter, the first list containing the parent nodes and the
second list containing the child nodes. Those nodes
without a parent node are considered to be root nodes,
each of which is the root of a tree data structure. Note that
counters within separate logical maps may be selected
resulting in multiple trees being created.

A matrix is then created, with the Y dimension equal to
the sum of the maximum width of each tree, and the X
equal to the depth of the deepest tree. Each tree is then
placed within the matrix, starting with the root node in the
left most column. The position of each node within the
matrix then represents the position of the corresponding
timing counter in the logical map. Creating the logical
map is then simply a matter of iterating over the matrix
and rendering each counter at the co-ordinates that
correspond to the position within the matrix.

Data Acquisition Application
The web based data acquisition application has been

designed using a three tier approach.
The top tier, also known as the presentation tier, has

been implemented using XHTML, JavaScript and CSS in
a style commonly referred to as AJAX [3]. By utilizing
the Document Object Model DOM [4] and the
XMLHttpRequest [5] interface, the web interface displays
the kind of interactive behaviour usually associated with
traditional desktop applications.

Once a user has made a selection, the presentation tier
organises the selected values into a HTTP POST request

which is then sent asynchronously to the business tier
using the XMLHttpRequest interface.

The asynchronous nature of the HTTP POST request is
then exploited to allow the client to display a graphical
representation showing the progress of the request and
even allows the user to cancel it.

The response is then received by the client in an XML
format. Using the DOM interface, the client accesses the
contents of the returned XML and displays it in tabular
form within the client interface. The sorting, hiding and
comparing of information is all achieved by manipulating
the DOM.

The middle tier, often referred to as the business tier
has been implemented using Java servlet technology [2]
and resides within an Apache Tomcat servlet engine
which acts as both a web server and servlet engine. On
receiving a request, the business tier first determines the
type of information that is being requested, and then
obtains the information from the appropriate component
from within the resource tier. This information is then
marshalled into an XML format and is returned to the
client.

Bottom Tier
The bottom tier, often referred to as the Resource Tier,

consists of a lightweight database and a number of
daemons, each of which runs on a front end computer.

The database contains a “snapshot” of the configuration
data related to the timing system that is contained within
the central controls database.

The business tier accesses the database using the JDBC
interface and uses the obtained information to satisfy
requests for static timing information.

It was decided to create an independent database instead
of directly accessing the main controls database due to the
fact that the main timing database is not optimized for
accessing timing related data and the queries required to
obtain such data are both complex and resource intensive.
Using a separate database also provides a level of
indirection between the diagnostics application and the
main controls database. Any changes to the table schema
within the central controls database, does not result in
changes to the diagnostics application. Instead, the only
change required would be to a script that is responsible
for data extraction and population.

The daemons running on front end computers are
responsible for providing data to satisfy requests
concerning dynamic values within the timing system. On
receiving a request for dynamic data, the business tier
executes an external legacy process, passing details of the
data required as parameters.

The legacy process then sends requests via the UDP
protocol to each front end computer from which
information is required. Each daemon responds with the
required information which the legacy application writes
to a text file. The legacy application then terminates and
the text file is read by the business tier, transformed into
an XML format and then sent to the client tier.

CONCLUSION AND FURTHER WORK
The suite of applications introduced here will reduce the
time and effort required to diagnose faults within the
CERN accelerator timing network.

The project has shown that there are many advantages
employing a web based presentation tier. These include
platform independence, resolution of deployment
problems and it ensures that the latest version of the
application is used as the web browser automatically
downloads the latest version of the JavaScript, XHTML
and related resources each time the application is
accessed.

Due to the complexities involved with rendering logical
timing maps and the time constraints imposed on the
project, it was decided to implement the logical mapping
component using Java Swing technology. However, with
the recent introduction of the HTML Canvas tag, it is now
feasible to implement a pure web based timing diagnostic
suite of applications.

CERN network security policy restrictions currently
prevent access to the web application component from
outside of the CERN network. It is hoped that further
research and development into web and network security
will allow this as it will permit timing diagnostics to be
carried out from anywhere in the world where there is a
internet connection

REFERENCES
[1] The Evolution of the CERN SPS Timing System for

the LHC Era. ICALEPCS 2003
[2] Servlet container
 http://java.sun.com/products/servlet
[3] AJAX
 www.adaptivepath.com/ideas/essays/
 archives/000385.php
[4] Document Object Model

www.w3.org/DOM/
[5] XMLHttpRequest

http://www.w3.org/TR/XMLHttpRequest/
[6] JavaWebstart

http://java.sun.com/products/javawebstart/

http://www.adaptivepath.com/ideas/essays
http://www.w3.org/DOM/
http://www.w3.org/TR/XMLHttpRequest/

	DISTRIBUTED TIMING DIAGNOSTIC APPLICATIONS
	TIMING SYSTEM OVERVIEW
	DIAGNOSING FAULTS
	DIAGNOSTIC SOFTWARE
	OBTAINING CONTROL VALUES
	DESIGN, ARCHITECTURE & TECHNOLOGY
	Mapping Application
	Data Acquisition Application
	Bottom Tier

	CONCLUSION AND FURTHER WORK
	REFERENCES

