
SDA TIME INTERVALS*

Timofei B. Bolshakov, FNAL, Batavia, IL 60510, U.S.A.

Abstract
SDA (Sequenced Data Acquisition) Time Intervals is a

hierarchical logging system for describing complex large-
scale repeated processes. SDA has been used extensively
at Fermilab for fine tuning during Tevatron Collider Run
II. SDA Time Intervals is a new system born during
discussions between CERN and FNAL about routinely
recording relevant data for the LHC. Its main advantages
are extremely low maintenance and good integration with
traditional "flat" dataloggers. The Time Intervals (TI)
system records the time of key events during a process
and relates these events to the data that a traditional
datalogger archives.

OBJECTIVES

Traditional SDA, terms and architecture.
SDA (Sequenced Data Acquisition) is hierarchical

datalogging system based on rules. The significant terms
in these rules are event, device, collection and shot. A
collection is a set of devices collected on specified
events. There are several types of collections. The type is
determined by a set of rules for different devices. A shot
contains certain types of collections and event-based rules
for starting and stopping. The source of many of those
events is the Sequencer [1]. The data collected during
the shot is stored in a relational database. Every collection
has a type and a name associated with it, for example
collection type 6 of Collider Shot has the name “Inject
Pbars”. Several collections of the same type in one
particular shot are called case. If collection is repeated
several times then the case may have sets - several
instances of the same collection. Shots, cases and sets are
the main terms in SDA.

SDA data are processed by the numerous tools and
applications of several layers. One of the first level
application is SDA Viewer. It allows for viewing data and
timestamps collected for shots, cases, and sets. Numerous
daemons compute different summary tables during the
Collider Shot and Pbar Transfer Shots. Other tables
provide a “shot by shot” analysis, showing progress
achieved weekly, monthly and yearly [2].

SDA also provides common language and performance
numbers for different groups at Fermilab. Physicists
found the role of this system critical for debugging and
fine tuning the accelerator complex during Collider Run
II.

Responsibility of maintaining SDA system is
distributed between operators, software professionals, and
special a SDA integration group. So, SDA is a costly, but
necessary system.

Reasons for new implementations.
LAFS (LHC At Fermilab Software) group was formed

at Fermilab in autumn of 2006. The goal of this group is
to share experience, ideas and software with LHC
operators and control professionals. A portable version of
SDA became one of initial LAFS projects, because the
thought was that achieving LHC goals hardly possible
without an SDA system or its analogue.

First suggestion was to create a “plugin based” version
of the SDA system with an XML database at its heart. A
“prove of concept” version of such a system was created
and tested.

Drawbacks.
Our CERN collaborators mentioned that such a system

would be hard to maintain due to
● non-standard approach (namely by the use of

XML database)
● significant time would be required to bring it

up to speed, because all the devices have to be
defined in a new database for each collection
type. Yet, all devices are already logged in a
standard timestamp-based datalogger.

Solution.
SDA Time Intervals (SDA TI) solves the problem of

high maintenance and initial time investment because the
work to define device rules is not needed. It is
implemented on relational DB. And it complements
timestamp-based relational dataloggers. It provides ~90%
of functionality we use in Fermilab. And additional ~10%
of functionality can be added later, when the need
becomes inevitable. SDA TI implementations is
operational in Fermilab from spring 2007.

Figure 1: Shots, cases and sets in SDA Viewer

__

*Fermilab is operated by Fermi Research Alliance, LLC., under Contract
No. DE-AC02-07CH11359 with the U.S. Department of Energy.

PROBLEM SETTING

SDA basics – reiterated.
Let's look at a complex process (Pbar Transfer Shot

from Accumulator to Recycler) and its SDA
representation from an operator's point of view. In order
to make the transfer Pbars should be unstacked from
Accumulator and transferred to Main Injector, somehow

conditioned there, and injected into Recycler. Several
transfers are made within a small time period, and
Accumulator returns into the stacking mode. So, each of
such a transfer involves 3 different accelerators, what
means 3 groups of people and 3 different hardware
systems. To collect the relevant data, each group is given
one type of collection. Each type of collection consists of
rules : on which event the collection should be started,
when it should be stopped, and which device to collect on
which event. Couple of rules regulate when to start and
stop the whole shot.

Such a system also makes it possible to look how some
subsystem was performing during the year. One needs to
analyse data from just one type of collections for many
shots.

Where working hours are spent and how to
minimize them.

Most of the initial time investment should be spent for
defining the rules for particular devices for every
collection type. On the new complex, it may be unclear
what would be needed to analyse the performance of a
particular subsystem.

Rules for the collections – when to start a given
collection and when to stop it – are a small fraction of the
SDA configuration. And those rules are easier to
understand from the beginning.

All the devices saved in SDA are supposed to be saved
in standard timestamp–based datalogger. So, now solution
seems to be natural – let's define the collection types and
the collection rules and let's keep only the collection
timestamps (start and stop) in a database. So, each
collection will become a time interval. And let's tie each
of those time intervals to a standard datalogger.

IMPLEMENTATION

Concept.
To reiterate – we have following time interval's

hierarchy: shot (of several types – currently Collider Shot
or Pbar Transfer Shot), case (series of similar smaller time
intervals), and set (a time interval of successful
operation). Consecutive increasing numbers will be
assigned to shots of the same type, to the cases inside
each shot and to the sets inside each case. A name will be
assigned to each case (type of time interval) and shot
type. Each lowest-level time interval (an analogue of
collection) will also have a “success” flag. Those time
intervals form a tree-like hierarchical structure. Shots of
different type belong to another tree.

Flat, timestamp based datalogger may be represented
by another table with following fields: device index,
timestamp, data.

SQL Table Structure.
The table structure is best described by the plaint SQL

statement (Sybase):

create table flat_datalogger(
devIndex INT not null,
ts Timestamp not null,
devReading REAL not null

)
create table sda_ti(

shot_type INT not null,
shot INT not null,
theCase INT not null,
theSet INT not null,
file_idx INT not null,
coll_idx INT not null,
successful TINYINT DEFAULT 1,
tStart Timestamp not null,

 tStop Timestamp not null
)

file_idx and coll_idx are used here for compatibility
reasons.

Figure 2: Pbar Transfer Shot in SDA Viewer

Figure 3: Time intervals in Collider Shot.

Data Acquisition.
To fill the sda_light table we need to define the start

and stop events for the shot, the case and the set time
intervals, and write a simple event-driven data acquisition
process. This procedure is straightforward.

Flat datalogger – filtering.
Despite its simplicity, the suggested structure provides

deep integration with “flat” dataloggers. SQL query for
selecting “all values of device X during third proton
bunch injection for the last year” is obvious. We call this
functionality filtering.

Flat dataloggers – tagging.
One can also easily tag each reading of flat database

with “shot/case/set” or plot time intervals similar to
Figure 3 on the standard datalogger plot. It can be done
using simple SQL statement.

SDA Tree.
The hierarchical SDA tree with “shot/case/set” nodes

can be also easily build. The task of finding the
correspondence between shots of different types also can
be easily implemented.

Temporal Logic.
Such a table defines temporal logic. Temporal logic

operations (“before”, “after”, “overlaps”, “contains”, “is
inside”) over these time intervals can be easily
implemented and used in application development.

Performance.
It is worth to mention that all tasks described above can

be efficiently implemented, because straightforward SQL
statements can be written to implement most of
functionality described above.

Summary tables.
Summary recomputed tables, analogues to Fermilab

Supertable, Recomputed Emittances, Recomputed
Intensities, Transfer Supertable and Bunch-by-bunch
tables [2] can be easily implemented over SDA TI. OSDA
API can be implemented also.

Missed Feature.
The only functionality that cannot be implemented with

SDA Time Intervals approach is saving big chunks of
high frequency data for relevant events. This functionality
is rarely used by most of the Fermilab SDA users, but it
was important for several machine specialists.

CONCLUSION
The described SDA Time Intervals System was

implemented in spring 2007 and works since then at
Fermilab. Java API with implemented temporal logic
helps to build “SDA Recomputed Tables” and to extract
necessary flat datalogger data relevant to the accelerator
state.

Author considers the described system as a good
hierarchical model for many complex repeatable process.
The Java API for temporal logic over time intervals,
application analogues to the SDA Viewer are portable and
can be applied to different processes.

REFERENCES
[1] J. Annala, “The Fermilab Sequencer - Use in Collider

Operations”, proceedings of ICALEPCS, 1995,
Chicago.

[2] T.B. Bolshakov, P. Lebrun, S. Panacek, V.
Papadimitriou, J. Slaughter, A. Xiao, SDA-based
diagnostic and analysis tools for Collider Run II PAC
2005, Knoxville, TN.

	SDA Time Intervals*
	Objectives
	Traditional SDA, terms and architecture.
	Reasons for new implementations.
	Drawbacks.
	Solution.

	Problem setting
	SDA basics – reiterated.
	Where working hours are spent and how to minimize them.

	Implementation
	Concept.
	SQL Table Structure.
	Data Acquisition.
	Flat datalogger – filtering.
	Flat dataloggers – tagging.
	SDA Tree.
	Temporal Logic.
	Performance.
	Summary tables.
	Missed Feature.

	Conclusion
	References

