
MDSPLUS REAL-TIME DATA ACCESS IN RTAI

A. Barbalace1), A. Luchetta1), G. Manduchi1), C. Taliercio1), T. Fredian2), J. Stillerman2)
1)Consorzio RFX, Associazione Euratom-ENEA per ricerche sulla fusione

Corso Stati Uniti, 4, 36127 Padova ITALY
2)Massachusetts Institute of Technology, 175 Albany Street,

Cambridge, MA 02139, United States

Abstract
The MDSplus package is widely used in nuclear Fusion

research for data acquisition and management. Recent
extensions of the system provide useful features for real-
time applications, such as the possibility of locking
selected data items in memory and real-time notification.
The real-time extensions of MDSplus have been
implemented as a set of C++ classes and can be easily
ported to any target architecture by developing a few
adapter classes. The real-time data access layer of
MDSplus is currently available for Windows, Linux,
VxWorks and RTAI. In particular, the RTAI platform is
very promising in this context because it allows the co-
existence of non-real-time and real-time tasks. It is hence
possible to devise an architecture where real-time
functionality is handled by a few selected tasks using the
real-time data access layer of MDSplus, whereas
background, non-real-time activity is carried out by
“traditional” Linux tasks. This organization may be of
interest for the next generation of fusion devices with
long-duration discharges, during which the system has to
provide feedback control in real time and to sustain
continuous data acquisition and storage.

INTRODUCTION

The MDSplus system has been successfully adopted in
many fusion experiments for data acquisition, storage and
access[1]. Until 2006, however, MDSplus was not fit for
the new generation of fusion experiments in which the
plasma discharge may last minutes or hours. In this case
data cannot be stored during the discharge in the local
memory of transient recorders and then transferred into
the pulse database after the discharge. Rather, data need
to be continuously acquired and stored in the database so
that it can be used during the discharge itself. The most
recent release of MDSplus allows data samples to be
appended to stored signals in the database[2]. This new
feature is useful for handling event driven data
acquisition, where bursts of data are acquired in
correspondence to events occurring during the discharge.
While the new features of MDSplus provide the hints to
achieve continuous data acquisition during the plasma
discharge, they cannot guarantee the real-time
responsiveness required to use acquired data in the active

control of the experiment. For this reason, work is in
progress for introducing real-time functionality in
MDSplus [3]. Feedback control is in fact becoming a
standard procedure in fusion experiments, but in most
current installations data acquisition is separated from
feedback control, due to the hard real-time requirements
of the latter.

SYSTEM ARCHITECTURE
The real-time layer of MDSplus is composed of two main
components: support for data caching in memory and
real-time notification of data update. They represent the
basic ingredients required to build feedback control
systems, where data are acquired from the sensors, a
control algorithm is executed and the results are sent to
the actuators.

The memory data cache component does not replace any
existing component of MDSplus for data acquisition, and
is built on top of the MDSplus data access layer. It allows
selecting a subset of data items for which a copy is
maintained by the system in memory in order to provide
deterministic access time. It is worth noting that such
mechanism cannot be compared to mapping disk files into
memory, since it permits to define precisely the data
items to be kept in memory. This feature is important
because it provides an optimized usage of memory space
since usually only a very reduced subset of data items is
handled in control, in respect of the whole set of data
involved in acquisition. The memory cache component
relies on the underlying MDSplus functionality for all the
other data–related operations. In particular, the combined
usage of memory caches and the remote data management
provided by MDSplus allows the construction of
distributed control systems, where the database reside
remotely, and every control node handles a local copy of
those data that are involved in control.

A notification mechanism for data update is useful in
feedback control systems where the system has to react to
the occurrence of a new event, such as the availability of
a new input sample from the sensors, which triggers the
computation of some sort of control algorithm and the
generation of a new set of outputs to the actuators. This
functionality is achieved using a publish-subscribe pattern
centered on data. An actor can express its interest in being
notified when a given data item is updated, by passing the

address of a callback routine. Afterwards, the system will
call such routine in a separate thread each time that data
item is updated.

Both memory caching and notification are supported also
in a distributed environment. Distributed memory data
caches require exchanging information when a given data
item is cached in different machines, in order to maintain
data consistency. MDSplus defines two different
approaches for handling cache coherence: push mode and
pull mode. In pull mode, when a data item is updated in
one cache, all the other data caches holding the same data
item are notified that this cache has become the current
owner of that data item. In this case, when the data item is
read in another cache, it is first requested from the current
owner. In push mode, the current owner, i.e. the cache
where data have been written, sends an updated version of
the data item to all the caches sharing it, which hold
therefore an up-to-date version of the data item. The push
mechanism is used also to achieve remote notification, i.e.
activating a callback routine in response to updating that
data item in a different machine. Depending on the way
data are accessed, either push or pull mechanisms may
minimize the number of exchanged messages. For
example, if a data item is updated frequently on one
machine and read only rarely on another machine, the pull
option is preferred. If however the data item has to be
read in one cache every time it is written in another cache,
a typical situation in feedback control, the push
mechanism is better.

Figure 1 shows a typical configuration for the real-time
layer of MDSplus in distributed control. Two networks
are involved: an off-line network is used by the
underlying MDSplus system to read data from the pulse
files, hosted in a separate data server. Data access via the
off-line network is carried out during non real-time
operation, normally before the discharge, in order to copy
data into the memory cache, and is achieved by means of
the TCP/IP-based protocol used by MDSplus for remote
data access. During real-time operation, most of the data
access is performed on the local cache. To maintain the
consistency of data items shared by two or more
computers, the communication is achieved via messages
exchanged along the online network, usually an isolated
Ethernet segment, or reflective memory. The off-line
network may also be concurrently used by low priority,
non real-time tasks for data logging.

ACHIEVING MULTIPLATFORM
SUPPORT

 The MDSplus package is currently available in a variety
of platforms including Linux, Windows and VxWorks.

The entire system, with the exception of the real-time
layer, has been written in C, and therefore multiplatform
support is provided in the traditional way of using the
#ifdef conditional preprocessor directive. The real-time

layer is instead written in C++, and in this case
multiplatform support has been achieved by encapsulating
system–dependent code into a subset of C++ classes.
Porting the system to a new platform requires therefore
re-implementing only those classes. In particular, the
system-specific classes refer to shared memory allocation,
thread activation, locking and event notification.

Real-time communication, required to maintain
consistency in distributed data caches, relies on the
implementation of a set of generic classes for
communication. Currently, a UDP-based implementation
over Ethernet is available, but other communication
media can be integrated, such as ATM and reflective
memories.

The real-time layer of MDSplus has been ported to Linux,
Windows and VxWorks. Only the latter system provides
real-time responsiveness, and in this case real-time
notification can be carried out by letting a high priority
task execute the callback routines in response to data
update. Such determinism in response time cannot be
achieved in Windows or Linux. However, quasi real-time
performance can be obtained using the Linux kernel 2.6
because it is possible to associate a fixed priority with a
subset of processes and the kernel has been made pre-
emptive by accurately defining the uninterruptible
segments in the kernel and protecting them with spin
locks, rather than disabling interrupts. For this reason, the
performance of the real-time MDSplus layer can be
satisfactory for those systems for which an occasional
delay in the response time is tolerable.

Figure 1: A typical configuration for distributed control.

INTEGRATION IN RTAI
In order to port MDSPlus to a free, open source real-time
operating system, we have considered RTAI, a real-time
extension of the Linux kernel[4]. There is a substantial
difference in software organization between VxWorks
and RTAI and, more in general, the real-time extensions
of Linux. In fact, in VxWorks all code runs natively in
privileged mode, thus letting user program have full
control of the hardware resources, providing at the same
time an environment which is quite similar to that
available in user mode on Unix. In this case the porting of
the MDSplus, and in particular of the real-time data

access layer, has been almost straightforward. This
required only slight changes in the system-specific
classes, such as a straight declaration of a memory buffer
instead of using system calls for handling shared
memory, since memory is natively shared by all tasks in
VxWorks. On Linux, instead, we had to decide which
components of the real-time data access layer had to be
moved to kernel space. Moving to kernel space, however,
would have required a deep re-arrangement of the code to
provide the required interface to the GLIBC support, not
directly available in kernel mode. This would have
required re-writing large parts of the code, something
which is against the general approach taken in MDSplus,
i.e. keeping the required system-specific differences to a
minimum in order to increase the maintenance of the
whole code. A solution to this problem is provided by the
fact that user processes can be made real-time in RTAI. In
this case the only changes required to take advantage of
the real-time capability of RTAI, with respect to the
Linux version, is the usage of a RTAI-specific real-time
semaphore in the data update notification.

Using this approach, a typical configuration for feedback
control, where a control computation is performed on a
set of inputs to produce the controller output to be sent to
the actuators, logging at the same time the output
references to a disk-based pulse file, would be the
following:
 1) The input device generates an interrupt when a new
data sample is available;

 2) The processor calls the associated Interrupt Service
Routine (ISR) via the general dispatching mechanism of
RTAI;

 3) The ISR code, running in kernel mode, reads the data
sample from the registers of the input device, copying it
in a memory segment shared by a user task, which gets
then awaked by a RTAI real-time semaphore;

 4) When the ISR exits, the RTAI scheduler forces a
direct context switch to the user process waiting for the
data, bypassing the Linux scheduler;

5) The user process makes the required control
computation and writes the results via the MDSplus real-
time data access layer;

6) When data have been written, a non real-time task is
activated by MDSplus for data logging, and another real-
time user process is awakened by the system which will
send data to the output driver (e.g. via a write in mmap
area).

Observe that the whole process activation chain is carried
out in real-time by RTAI bypassing the Linux scheduling
mechanisms, while retaining all the MDSplus code in user
mode. At the same time, a Linux process will carry out
data logging on permanent storage.

The possibility of letting user processes become real-time
processes is offered also by Xenomai [5], another real-

time extension of Linux. We carried out a performance
comparison between RTAI and Xenomai [6], and we
observed that Xenomai has a slightly poorer performance,
but it is better engineered than RTAI. For both RTAI and
Xenomai, the porting of the non real-time part of
MDSplus is straightforward because both systems are
built on top of Linux, and therefore no changes are
required in the Linux version of MDSplus. Although we
are currently porting MDSplus to RTAI, we plan to do a
similar job for Xenomai in the future, since porting the
real-time layer of MDSplus to either RTAI or Xenomai
requires only a slight change in the system classes in
order to use the system specific semaphores and
processes.

When considering distributed systems involving real-time
communication to achieve data cache coherence, a
promising approach is the usage of RTNet [7], an open
source hard real-time network protocol stack for RTAI
and Xenomai which makes use of standard Ethernet
hardware. The integration of RTNet into the framework
requires an implementation of the system specific classes
for communication, and is currently under development.

In conclusion, the availability of real-time user processes
represents a good tradeoff between performance and
software maintenance, and the real-time extension of
MDSplus over RTAI or Xenomai represents a valid
candidate for the development of real-time control
systems in the next generation of long lasting fusion
experiments.

ACKNOWLEDGEMENT
This work was supported by the European

Communities under the contract of Association between
EURATOM/ENEA

REFERENCES
 [1] T . Fredian , J . Stillerman ”MDSplus Current

developments and future directions, Fusion
Engineering and Design”, vol 60, 2002, pp 229-233

[2] T. Fredian, J. Stillerman, G. Manduchi, “MDSplus
extensions for long pulse experiments”, to appear in
Fusion Engineering and Design.

[3] G.Manduchi, A. Luchetta, C. Taliercio, T. Fredian, J.
Stillerman “Real Time Data Access Layer for
MDSplus”, to appear in Fusion Engineering and
Design.

[4] RTAI Home page, [Online]. http://www.rtai.org
[5] Xenomai Home Page, [Online].

http://www.Xenomai.org.
[6] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A.

Soppelsa and C. Taliercio “Performance Comparison
of VxWorks, Linux, RTAI and Xenomai in a Hard
Real-time Application”, to appear in IEEE
Transactions on Nuclear Sciences.

[7] RTNet Home Page [Online] http://www.rts.uni-
hannover.de/r tnet

